An Improved Jacobi-Davidson Method With Multi-Level Startup Procedure

被引:1
|
作者
Nickel, Patrick [1 ]
Dyczij-Edlinger, Romanus [1 ]
机构
[1] Univ Saarland, Dept Phys & Mechatron, D-66123 Saarbrucken, Germany
关键词
Eigenvalues and eigenfunctions; electromagnetic fields; finite element methods; numerical analysis;
D O I
10.1109/TMAG.2009.2012632
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Jacobi-Davidson method is very attractive for the large-scale finite element simulation of electromagnetic cavity problems, because it just requires approximate solutions to some auxiliary systems of linear equations, which are easily obtained by iterative solvers. Moreover, rates of convergence are quadratic to cubic. In consequence, the time spent within the pre-asymptotic region at the early stages of the iteration may have strong impact on overall performance, particularly when the number of eigenvalues sought is small. Therefore, we propose a startup procedure that utilizes p hierarchical finite element spaces to reduce the cost of bridging the pre-asymptotic region.
引用
收藏
页码:1372 / 1375
页数:4
相关论文
共 50 条
  • [31] On local quadratic convergence of inexact simplified Jacobi-Davidson method
    Bai, Zhong-Zhi
    Miao, Cun-Qiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 520 : 215 - 241
  • [32] Parallel Jacobi-Davidson method for multichannel blind equalization criterium
    Yang, TR
    IEEE TENCON'97 - IEEE REGIONAL 10 ANNUAL CONFERENCE, PROCEEDINGS, VOLS 1 AND 2: SPEECH AND IMAGE TECHNOLOGIES FOR COMPUTING AND TELECOMMUNICATIONS, 1997, : 847 - 850
  • [33] Polynomial optimization and a Jacobi-Davidson type method for commuting matrices
    Bleylevens, Ivo W. M.
    Hochstenbach, Michiel E.
    Peeters, Ralf L. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 224 : 564 - 580
  • [34] Solving eigenproblems: From Arnoldi via Jacobi-Davidson to the Riccati method
    Brandts, JH
    NUMERICAL METHODS AND APPLICATIONS, 2003, 2542 : 167 - 173
  • [35] A Jacobi-Davidson method for computing partial generalized real Schur forms
    van Noorden, Tycho
    Rommes, Joost
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2006, : 963 - +
  • [36] Preconditioned inexact Jacobi-Davidson method for large symmetric eigenvalue problems
    Miao, Hong-Yi
    Wang, Li
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):
  • [37] Computing eigenvalues occurring in continuation methods with the Jacobi-Davidson QZ method
    van Dorsselaer, JLM
    JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 138 (02) : 714 - 733
  • [38] Jacobi-Davidson type method for the two-parameter eigenvalue problem
    Hochstenbach, ME
    Kosir, T
    Plestenjak, B
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (02) : 477 - 497
  • [39] The Least squares and line search in extracting eigenpairs in Jacobi-Davidson method
    Ravibabu, Mashetti
    Singh, Arindama
    BIT NUMERICAL MATHEMATICS, 2020, 60 (04) : 1033 - 1055
  • [40] Calculation of rightmost eigenvalues in power systems using the Jacobi-Davidson method
    Du, ZC
    Liu, W
    Fang, WL
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2006, 21 (01) : 234 - 239