An Improved Jacobi-Davidson Method With Multi-Level Startup Procedure

被引:1
|
作者
Nickel, Patrick [1 ]
Dyczij-Edlinger, Romanus [1 ]
机构
[1] Univ Saarland, Dept Phys & Mechatron, D-66123 Saarbrucken, Germany
关键词
Eigenvalues and eigenfunctions; electromagnetic fields; finite element methods; numerical analysis;
D O I
10.1109/TMAG.2009.2012632
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Jacobi-Davidson method is very attractive for the large-scale finite element simulation of electromagnetic cavity problems, because it just requires approximate solutions to some auxiliary systems of linear equations, which are easily obtained by iterative solvers. Moreover, rates of convergence are quadratic to cubic. In consequence, the time spent within the pre-asymptotic region at the early stages of the iteration may have strong impact on overall performance, particularly when the number of eigenvalues sought is small. Therefore, we propose a startup procedure that utilizes p hierarchical finite element spaces to reduce the cost of bridging the pre-asymptotic region.
引用
收藏
页码:1372 / 1375
页数:4
相关论文
共 50 条
  • [1] A modification of the Jacobi-Davidson method ∗
    Ravibabu, Mashetti
    arXiv, 2019,
  • [2] On the correction equation of the Jacobi-Davidson method
    Wu, Gang
    Pang, Hong-Kui
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 522 : 51 - 70
  • [3] A Jacobi-Davidson type SVD method
    Hochstenbach, ME
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (02): : 606 - 628
  • [4] A Jacobi-Davidson method for nonlinear eigenproblems
    Voss, H
    COMPUTATIONAL SCIENCE - ICCS 2004, PT 2, PROCEEDINGS, 2004, 3037 : 34 - 41
  • [5] Behavior of the Correction Equations in the Jacobi-Davidson Method
    Kong, Yuan
    Fang, Yong
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [6] CONTROLLING INNER ITERATIONS IN THE JACOBI-DAVIDSON METHOD
    Hochstenbach, Michiel E.
    Notay, Yvan
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (02) : 460 - 477
  • [7] Alternative correction equations in the Jacobi-Davidson method
    Genseberger, M
    Sleijpen, GLG
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1999, 6 (03) : 235 - 253
  • [8] A Jacobi-Davidson method for nonlinear and nonsymmetric eigenproblems
    Voss, H.
    COMPUTERS & STRUCTURES, 2007, 85 (17-18) : 1284 - 1292
  • [9] INCREASING THE PERFORMANCE OF THE JACOBI-DAVIDSON METHOD BY BLOCKING
    Roehrig-Zoellner, Melven
    Thies, Jonas
    Kreutzer, Moritz
    Alvermann, Andreas
    Pieper, Andreas
    Basermann, Achim
    Hager, Georg
    Wellein, Gerhard
    Fehske, Holger
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (06): : C697 - C722
  • [10] An Improved Jacobi-Davidson Method for the Computation of Selected Eigenmodes in Waveguide Cross Sections
    Bandlow, Bastian
    Sievers, Denis
    Schuhmann, Rolf
    IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 3461 - 3464