Entropy meters and the entropy of non-extensive systems

被引:17
|
作者
Lieb, Elliott H. [1 ]
Yngvason, Jakob [2 ,3 ]
机构
[1] Princeton Univ, Dept Math & Phys, Princeton, NJ 08544 USA
[2] Univ Vienna, Fac Phys, Vienna, Austria
[3] Erwin Schrodinger Inst Math Phys, Vienna, Austria
基金
美国国家科学基金会; 奥地利科学基金会;
关键词
second law of thermodynamics; entropy meters; non-extensive systems;
D O I
10.1098/rspa.2014.0192
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In our derivation of the second law of thermodynamics from the relation of adiabatic accessibility of equilibrium states, we stressed the importance of being able to scale a system's size without changing its intrinsic properties. This leaves open the question of defining the entropy of macroscopic, but unscalable systems, such as gravitating bodies or systems where surface effects are important. We show here how the problem can be overcome, in principle, with the aid of an 'entropy meter'. An entropy meter can also be used to determine entropy functions for non-equilibrium states and mesoscopic systems.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Non-extensive statistical entropy, quantum groups and quantum entanglement
    Trindade, M. A. S.
    Vianna, J. D. M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (12) : 3413 - 3416
  • [22] Fuzzy C-Means with Non-Extensive Entropy Regularization
    Susan, Seba
    Sharawat, Puneet
    Singh, Sandeep
    Meena, Ramkesh
    Verma, Amit
    Kumar, Mukesh
    2015 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, INFORMATICS, COMMUNICATION AND ENERGY SYSTEMS (SPICES), 2015,
  • [23] On the q = 1/2 non-extensive maximum entropy distribution
    Universidad Nacional de La Plata, La Plata, Argentina
    Phys A, 3-4 (458-465):
  • [24] A unified regularization theory: the maximum non-extensive entropy principle
    De Campos Velho, Haroldo F.
    Shiguemori, Elcio H.
    Ramos, Fernando M.
    Carvalho, Joao C.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2006, 25 (2-3): : 307 - 330
  • [25] Non-extensive block entropy statistics of Cantor fractal sets
    Provata, A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 381 : 148 - 154
  • [26] Non-extensive entropy in q-deformed quantum groups
    Lavagno, A
    Swamy, PN
    CHAOS SOLITONS & FRACTALS, 2002, 13 (03) : 437 - 444
  • [27] A non-extensive entropy feature and its application to texture classification
    Susan, Seba
    Hanmandlu, Madasu
    NEUROCOMPUTING, 2013, 120 : 214 - 225
  • [28] A unified regularization theory: The maximum non-extensive entropy principle
    Instituto Nacional de Pesquisas Espaciais , Laboratório Associado de Computação e Matemática Aplicada , São José dos Campos, SP, Brazil
    不详
    不详
    Comput. Appl. Math., 2006, 2-3 (307-330):
  • [29] Study of non-extensive entropy of bound polaron in monolayer graphene
    R. Khordad
    H. R. Rastegar Sedehi
    Indian Journal of Physics, 2018, 92 : 979 - 984
  • [30] Application of non-extensive entropy to study of decoherence of RbCl quantum dot qubit: Tsallis entropy
    Khordad, R.
    Sedehi, H. R. Rastegar
    SUPERLATTICES AND MICROSTRUCTURES, 2017, 101 : 559 - 566