Numerical simulation of a cavity receiver enhanced with transparent aerogel for parabolic dish solar power generation

被引:14
|
作者
Li, Xueling [1 ]
Li, Renfu [1 ]
Chang, Huawei [2 ]
Zeng, Lijian [3 ]
Xi, Zhaojun [1 ]
Li, Yichao [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Aerosp Engn, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Concentrated solar power; Parabolic dish; Cavity receiver; Transparent aerogel; Efficiency improvement; THERMAL PERFORMANCE; HIGH-TEMPERATURE; SILICA AEROGEL; HEAT-LOSS; CONCENTRATOR; OPTIMIZATION;
D O I
10.1016/j.energy.2022.123358
中图分类号
O414.1 [热力学];
学科分类号
摘要
Concentrated solar power plays an increasingly significant role in power generation. The photothermal performance of the receiver has a notable impact on the solar thermal power system. Herein, a cavity receiver enhanced with a transparent aerogel for a parabolic dish system is first proposed, and a threedimensional numerical model considering the absorption and scattering of the solar radiation by the aerogel is established to investigate its photothermal performance. The results show that the transparent aerogel can significantly reduce the heat loss of the cavity receiver. A cavity receiver with a 0.01 m-thick aerogel can reach an efficiency of 85.0%, which is 5.1% higher than that of the cavity receiver without the aerogel. However, as the intercepted solar radiation energy increases, the ability of the aerogel to improve the receiver efficiency is weakened because of the absorption and scattering for solar radiation by the aerogel. In addition, the efficiency of the cavity receiver with the aerogel is less affected by the inclination angle than that of a receiver without the aerogel. Finally, the challenges of applying transparent aerogels in cavity receivers are discussed. This work suggest that the aerogel cavity receiver has application prospects in parabolic dish solar power generation systems.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Effect of the concentration ratio on the thermal performance of a conical cavity tube receiver for a solar parabolic dish concentrator system
    Abbas, Sajid
    Yuan, Yanping
    Hassan, Atazaz
    Zhou, Jinzhi
    Ahmed, Ammar
    Yang, Li
    Bisengimana, Emmanuel
    APPLIED THERMAL ENGINEERING, 2023, 227
  • [42] A detailed mathematical model for thermal performance analysis of a cylindrical cavity receiver in a solar parabolic dish collector system
    Karimi, Reza
    Gheinani, Touraj Tavakoli
    Avargani, Vahid Madadi
    RENEWABLE ENERGY, 2018, 125 : 768 - 782
  • [43] Combined laminar natural convection and surface radiation heat transfer in a modified cavity receiver of solar parabolic dish
    Reddy, K. S.
    Kumar, N. Sendhil
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2008, 47 (12) : 1647 - 1657
  • [44] Optical and thermal analysis of solar parabolic dish cavity receiver system for hydrogen production using deep learning
    Mohite, Saurabh Jaywant
    Reddy, K. S.
    ENERGY CONVERSION AND MANAGEMENT, 2023, 292
  • [45] THE SOLAR FLUX DISTRIBUTION IN CAVITY RECEIVERS WITH PARABOLIC DISH COLLECTOR
    BAMMERT, K
    HEGAZY, A
    SEIFERT, P
    ATOMKERNENERGIE-KERNTECHNIK, 1982, 40 (03): : 145 - 154
  • [46] Numerical simulation on the thermal performance of a solar molten salt cavity receiver
    Chang, Zheshao
    Li, Xin
    Xu, Chao
    Chang, Chun
    Wang, Zhifeng
    RENEWABLE ENERGY, 2014, 69 : 324 - 335
  • [47] Numerical simulation and optimization of parabolic trough cavity solar collector system
    槽式腔体太阳能集热系统特性数值模拟及优化
    Li, Ming (lmllldy@126.com), 2018, Science Press (39):
  • [48] EXPERIMENTAL ANALYSIS OF PARABOLIC SOLAR DISH WITH RADIATOR HEAT EXCHANGER RECEIVER
    Aljabair, Sattar
    Habeeb, Laith J.
    Ali, Ameer M.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2020, 15 (01): : 437 - 454
  • [49] A receiver geometrical details effect on a solar parabolic dish collector performance
    Cherif, Hiba
    Ghomrassi, Anissa
    Sghaier, Jalila
    Mhiri, Hatem
    Bournot, Philippe
    ENERGY REPORTS, 2019, 5 : 882 - 897
  • [50] ANN model to predict the performance of parabolic dish collector with tubular cavity receiver
    Loni, Reyhaneh
    Kasaeian, Alibakhsh
    Shahverdi, Kazem
    Asli-Ardeh, Ezzatollah Askari
    Ghobadian, Barat
    Ahmadi, Mohammad H.
    MECHANICS & INDUSTRY, 2017, 18 (04)