An Ensemble Model for Consumer Emotion Prediction Using EEG Signals for Neuromarketing Applications

被引:12
|
作者
Shah, Syed Mohsin Ali [1 ]
Usman, Syed Muhammad [2 ]
Khalid, Shehzad [3 ]
Rehman, Ikram Ur [4 ]
Anwar, Aamir [4 ]
Hussain, Saddam [5 ]
Ullah, Syed Sajid [6 ]
Elmannai, Hela [7 ]
Algarni, Abeer D. [7 ]
Manzoor, Waleed [3 ]
机构
[1] Shaheed Zulfikar Ali Bhutto Inst Sci & Technol, Dept Comp Sci, Islamabad 44000, Pakistan
[2] Air Univ, Fac Comp & AI, Dept Creat Technol, Islamabad 44000, Pakistan
[3] Bahria Univ, Dept Comp Engn, Islamabad 44000, Pakistan
[4] Univ West London, Sch Comp & Engn, London W5 5RF, England
[5] Univ Brunei Darussalam, Sch Digital Sci, Jalan Tungku Link, BE-1410 Gadong, Brunei
[6] Univ Agder UiA, Dept Informat & Commun Technol, N-4898 Grimstad, Norway
[7] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Technol, POB 84428, Riyadh 11671, Saudi Arabia
关键词
neuromarketing; EEG; SMOTE; LSTM; DWT; PSD; ELECTROENCEPHALOGRAM EEG; BRAIN; PREFERENCE; NETWORKS; STIMULI;
D O I
10.3390/s22249744
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Traditional advertising techniques seek to govern the consumer's opinion toward a product, which may not reflect their actual behavior at the time of purchase. It is probable that advertisers misjudge consumer behavior because predicted opinions do not always correspond to consumers' actual purchase behaviors. Neuromarketing is the new paradigm of understanding customer buyer behavior and decision making, as well as the prediction of their gestures for product utilization through an unconscious process. Existing methods do not focus on effective preprocessing and classification techniques of electroencephalogram (EEG) signals, so in this study, an effective method for preprocessing and classification of EEG signals is proposed. The proposed method involves effective preprocessing of EEG signals by removing noise and a synthetic minority oversampling technique (SMOTE) to deal with the class imbalance problem. The dataset employed in this study is a publicly available neuromarketing dataset. Automated features were extracted by using a long short-term memory network (LSTM) and then concatenated with handcrafted features like power spectral density (PSD) and discrete wavelet transform (DWT) to create a complete feature set. The classification was done by using the proposed hybrid classifier that optimizes the weights of two machine learning classifiers and one deep learning classifier and classifies the data between like and dislike. The machine learning classifiers include the support vector machine (SVM), random forest (RF), and deep learning classifier (DNN). The proposed hybrid model outperforms other classifiers like RF, SVM, and DNN and achieves an accuracy of 96.89%. In the proposed method, accuracy, sensitivity, specificity, precision, and F1 score were computed to evaluate and compare the proposed method with recent state-of-the-art methods.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Wireless EEG Signals based Neuromarketing System using Fast Fourier Transform (FFT)
    Murugappan, M.
    Murugappan, Subbulakshmi
    Balaganapathy
    Gerard, Celestin
    2014 IEEE 10TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & ITS APPLICATIONS (CSPA 2014), 2014, : 25 - 30
  • [22] Emotion Recognition with Machine Learning Using EEG Signals
    Bazgir, Omid
    Mohammadi, Zeynab
    Habibi, Seyed Amir Hassan
    2018 25TH IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING AND 2018 3RD INTERNATIONAL IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING (ICBME), 2018, : 149 - 153
  • [23] Precursor Emotion of Driver by Using Electroencephalogram (EEG) Signals
    Nor, Norzaliza Md
    Bar, Abdul Wahab
    ADVANCED SCIENCE LETTERS, 2015, 21 (10) : 3024 - 3028
  • [24] Ensemble Learning for Alcoholism Classification Using EEG Signals
    Cohen, Seffi
    Katz, Or
    Presil, Dan
    Arbili, Ofir
    Rokach, Lior
    IEEE SENSORS JOURNAL, 2023, 23 (15) : 17714 - 17724
  • [25] Quantitative Analysis for Emotion Recognition by Using EEG Signals
    Khairunizam, Wan
    Lai, Y. J.
    Choong, W. Y.
    Mustapha, Wan Azani
    2024 16TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING, ICCAE 2024, 2024, : 428 - 431
  • [26] Cross-Subject Emotion Recognition From Multichannel EEG Signals Using Multivariate Decomposition and Ensemble Learning
    Vempati, Raveendrababu
    Sharma, Lakhan Dev
    Tripathy, Rajesh Kumar
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2025, 17 (01) : 77 - 88
  • [27] Emotion analysis of EEG signals using proximity-conserving auto-encoder (PCAE) and ensemble techniques
    Mathumitha, R.
    Maryposonia, A.
    COGNITIVE NEURODYNAMICS, 2025, 19 (01)
  • [28] Deep feature extraction from EEG signals using xception model for emotion classification
    Phukan, Arpan
    Gupta, Deepak
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (11) : 33445 - 33463
  • [29] AN EMOTION ANALYSIS METHOD THAT INTEGRATES EEG SIGNALS AND MUSIC THERAPY USING A TRANSFORMER MODEL
    Han, Jiayu
    Xu, Lijun
    Yang, Qing
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2024, 24 (08)
  • [30] Deep feature extraction from EEG signals using xception model for emotion classification
    Arpan Phukan
    Deepak Gupta
    Multimedia Tools and Applications, 2024, 83 : 33445 - 33463