APPROXIMATING RATIONAL POINTS ON TORIC VARIETIES

被引:4
|
作者
McKinnon, David [1 ]
Satriano, Matthew [1 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1090/tran/8318
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a smooth projective variety X over a number field k and P is an element of X(k), the first author conjectured that in a precise sense, any sequence that approximates P sufficiently well must lie on a rational curve. We prove this conjecture for smooth split toric surfaces conditional on Vojta's conjecture. More generally, we show that if X is a Q-factorial terminal split toric variety of arbitrary dimension, then P is better approximated by points on a rational curve than by any Zariski dense sequence.
引用
收藏
页码:3557 / 3577
页数:21
相关论文
共 50 条
  • [31] Rational points on certain homogeneous varieties
    Yang, Pengyu
    EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (01)
  • [32] Varieties with too many rational points
    Browning, T. D.
    Loughran, D.
    MATHEMATISCHE ZEITSCHRIFT, 2017, 285 (3-4) : 1249 - 1267
  • [33] Counting rational points on ruled varieties
    McKinnon, D
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2004, 47 (02): : 264 - 270
  • [34] Skeletons of stable maps I: rational curves in toric varieties
    Ranganathan, Dhruv
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 95 : 804 - 832
  • [35] Imaginary quadratic points on toric varieties via universal torsors
    Pieropan, Marta
    MANUSCRIPTA MATHEMATICA, 2016, 150 (3-4) : 415 - 439
  • [36] THE DISTRIBUTION OF GALOIS ORBITS OF POINTS OF SMALL HEIGHT IN TORIC VARIETIES
    Burgos Gil, Jose Ignacio
    Philippon, Patrice
    Rivera-Letelier, Juan
    Sombra, Martin
    AMERICAN JOURNAL OF MATHEMATICS, 2019, 141 (02) : 309 - 381
  • [37] Imaginary quadratic points on toric varieties via universal torsors
    Marta Pieropan
    Manuscripta Mathematica, 2016, 150 : 415 - 439
  • [38] COUNTING INTEGER AND RATIONAL-POINTS ON VARIETIES
    SILVERMAN, JH
    ASTERISQUE, 1995, (228) : 223 - 236
  • [39] On the density of rational and integral points on algebraic varieties
    Salberger, Per
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 606 : 123 - 147
  • [40] Potential density of rational points on algebraic varieties
    Hassett, B
    HIGHER DIMENSIONAL VARIETIES AND RATIONAL POINTS, 2003, 12 : 223 - 282