3-D to 2-D pose determination with regions

被引:19
|
作者
Jacobs, D
Basri, R
机构
[1] NEC Res Inst, Princeton, NJ 08540 USA
[2] Weizmann Inst Sci, Dept Appl Math, IL-76100 Rehovot, Israel
关键词
object recognition; pose determination; linear programming; line traversal; occlusion; regions; parts; convexity;
D O I
10.1023/A:1008135819955
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel approach to parts-based object recognition in the presence of occlusion. We focus on the problem of determining the pose of a 3-D object from a single 2-D image when convex parts of the object have been matched to corresponding regions in the image. We consider three types of occlusions: self-occlusion, occlusions whose locus is identified in the image, and completely arbitrary occlusions. We show that in the first two cases this is a convex optimization problem, derive efficient algorithms, and characterize their performance. For the last case, we prove that the problem of finding valid poses is computationally hard, but provide an efficient, approximate algorithm. This work generalizes our previous work on region-based object recognition, which focused on the case of planar models.
引用
收藏
页码:123 / 145
页数:23
相关论文
共 50 条
  • [31] Assembling 2-D Blocks into 3-D Chips
    Knechtel, Johann
    Markov, Igor L.
    Lienig, Jens
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2012, 31 (02) : 228 - 241
  • [32] 3-D waveguides created by 2-D fabrication
    Bains, S
    LASER FOCUS WORLD, 2004, 40 (08): : 17 - +
  • [33] Performance visualization: 2-D, 3-D, and beyond
    Reed, DA
    Gardner, MJ
    Smirni, E
    IEEE INTERNATIONAL COMPUTER PERFORMANCE AND DEPENDABILITY SYMPOSIUM - IPDS'96, PROCEEDINGS, 1996, : 188 - 197
  • [34] 3-D accelerator includes 2-D, MPEG
    Quinnell, RA
    EDN, 1996, 41 (10) : 32 - 32
  • [35] 2-D REPRESENTATION OF 3-D LIMIT SURFACES
    VANMIER, JGM
    DEBORST, R
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 1986, 112 (11): : 1255 - 1258
  • [36] Thymic microenvironments, 3-D versus 2-D?
    van Ewijk, W
    Wang, BP
    Holländer, G
    Kawamoto, H
    Spanopoulou, E
    Itoi, M
    Amagai, T
    Jiang, YF
    Germeraad, WTV
    Chen, WF
    Katsura, Y
    SEMINARS IN IMMUNOLOGY, 1999, 11 (01) : 57 - 64
  • [37] Moving from 2-D design to 3-D
    不详
    MECHANICAL ENGINEERING, 2001, 123 (06) : 18 - 18
  • [38] 2-D SEISMIC VESSELS FOR 3-D MISSIONS
    SCHMIDT, VA
    SEA TECHNOLOGY, 1994, 35 (09) : 15 - &
  • [39] Toolbar interface for 2-D and 3-D software
    不详
    R&D MAGAZINE, 1999, 41 (02): : 78 - 78
  • [40] 2-D and 3-D reconstruction for tracheal stenosis
    Rajesh, A
    Aslam, M
    Jeyapalan, K
    ANAESTHESIA, 2000, 55 (05) : 513 - 514