A reduced-order modeling based on multi-scale method for wrinkles with variable orientations

被引:8
|
作者
Khalil, Siham [1 ]
Belaasilia, Youssef [1 ]
Hamdaoui, Abdellah [1 ]
Braikat, Bouazza [1 ]
Damil, Noureddine [1 ]
Potier-Ferry, Michel [2 ]
机构
[1] Hassan II Univ Casablanca, Fac Sci Ben MSik, Lab Ingn & Mat LIMAT, BP 7955 Sidi Othman, Casablanca, Morocco
[2] Univ Lorraine, LEM3, Arts & Metiers ParisTech, CNRS, F-57000 Metz, France
关键词
Reduced models; Wrinkles; Variable orientation; Membrane; Rippl von Karman model; GENERALIZED CONTINUUM APPROACH; THIN MEMBRANES; PARAMETERIZATION; SIMULATION; BEHAVIOR; FILMS;
D O I
10.1016/j.ijsolstr.2020.10.002
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We discuss a reduced-order modeling technique based on Fourier series for membrane wrinkling when the orientation of the wrinkles is not uniform. Indeed, the orientation of the wrinkles depends on geometry and loading, for instance in the case of perforated membrane or with non uniform residual stresses. This Fourier-based reduction technique is an extension of the famous Ginzburg-Landau equation and it has been applied to the wrinkling of beams, plates, sandwich structures and film-substrate systems. The obtained reduced macroscopic models can be discretized by finite elements. In this paper, a finite element of type Discrete Kirchhoff Triangle (DKT18) is used in the numerical applications, the starting model being the Foppl von Karman (FvK) or Extended Foppl von Karman (EFvK) shell models. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:89 / 103
页数:15
相关论文
共 50 条
  • [31] A MULTI-SCALE METHOD FOR MODELING NANOCHANNEL FLOWS
    Borg, Matthew K.
    Lockerby, Duncan A.
    Reese, Jason M.
    PROCEEDINGS OF THE ASME 10TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS AND MINICHANNELS 2012, 2012, : 523 - +
  • [32] Reduced-order modeling for flutter prediction
    Pettit, CL
    Beran, PS
    COLLECTION OF THE 41ST AIAA/ASME/ASCE/AHS/ASC STRUCTURES, STRUCTURAL DYNAMICS, AND MATERIALS CONFERENCE AND EXHIBIT, VOL 1 PTS 1-3, 2000, : 773 - 783
  • [33] Reduced-order modeling: a personal journey
    Earl Dowell
    Nonlinear Dynamics, 2023, 111 : 9699 - 9720
  • [34] Reduced-order modeling of soft robots
    Chenevier, Jean
    Gonzalez, David
    Aguado, J. Vicente
    Chinesta, Francisco
    Cueto, Elias
    PLOS ONE, 2018, 13 (02):
  • [35] REDUCED-ORDER MODELING FOR HYPERTHERMIA CONTROL
    POTOCKI, JK
    THARP, HS
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1992, 39 (12) : 1265 - 1273
  • [36] Reduced-Order Modeling of Gust Responses
    Wales, Christopher
    Gaitonde, Ann
    Jones, Dorian
    JOURNAL OF AIRCRAFT, 2017, 54 (04): : 1350 - 1363
  • [37] Multi-Scale Modeling of Antennas with TLM Method
    Verissimo, G.
    Cuggia, R.
    Dubard, J. L.
    Ney, M.
    Pichot, C.
    PROCEEDINGS OF THE FOURTH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, 2010,
  • [38] A Reduced-Order Multi-Scale, Multi-Dimensional Model for Performance Prediction of Large-Format Li-Ion Cells
    Fan, Guodong
    Pan, Ke
    Storti, Gian Luca
    Canova, Marcello
    Marcicki, James
    Yang, Xiao Guang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (02) : A252 - A264
  • [39] Numerically Based Reduced-Order Thermal Modeling of Traction Motors
    Boscaglia, Luca
    Boglietti, Aldo
    Nategh, Shafigh
    Bonsanto, Fabio
    Scema, Claudio
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2021, 57 (04) : 4118 - 4129
  • [40] Impact of tropical teleconnections on the long-range predictability of the atmosphere at midlatitudes: a reduced-order multi-scale model perspective
    Vannitsem, Stephane
    JOURNAL OF PHYSICS-COMPLEXITY, 2023, 4 (04):