Modeling the propagation of elastic waves using a modified finite-difference grid

被引:539
|
作者
Saenger, EH [1 ]
Gold, N [1 ]
Shapiro, SA [1 ]
机构
[1] Univ Karlsruhe, Inst Geophys, WIT Grp, D-76187 Karlsruhe, Germany
关键词
D O I
10.1016/S0165-2125(99)00023-2
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The modeling of elastic waves with an explicit finite difference (FD) scheme on a staggered grid causes instability problems when the medium possesses high contrast discontinuities (strong heterogeneities). In this paper we have derived a new rotated staggered grid where all medium parameters are defined at appropriate positions within an elementary cell for the essential operations. Using this modified grid it is possible to simulate the propagation of elastic waves in a medium containing cracks, pores or free surfaces without applying boundary conditions. We compare the von Neumann stability criterion and the dispersion error for the new rotated staggered grid with the results of the standard staggered grid. Additionally, we show two synthetic examples and a comparison with a laboratory experiment to demonstrate advantages of the new rotated staggered grid in 2D and 3D. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:77 / 92
页数:16
相关论文
共 50 条
  • [41] Modeling Elastic Wave Propagation Using K-Space Operator-Based Temporal High-Order Staggered-Grid Finite-Difference Method
    Chen, Hanming
    Zhou, Hui
    Zhang, Qingchen
    Chen, Yangkang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (02): : 801 - 815
  • [42] SEPARATION OF LONGITUDINAL AND TRANSVERSE-WAVES IN ELASTIC-SCATTERING USING FINITE-DIFFERENCE METHODS
    STACEY, R
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1995, 98 (01): : 261 - 269
  • [43] Modeling 3-D scalar waves using the Fourier finite-difference method
    Zhang Jin-Hai
    Wang Wei-Min
    Zhao Lian-Feng
    Yao Zhen-Xing
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2007, 50 (06): : 1854 - 1862
  • [44] A parameter-modified method for implementing surface topography in elastic-wave finite-difference modeling
    Cao, Jian
    Chen, Jing-Bo
    GEOPHYSICS, 2018, 83 (06) : T313 - T332
  • [45] Tube Wave Modeling by the Finite-difference Method with Varying Grid Spacing
    Falk, J.
    Tessmer, E.
    Gajewski, D.
    Pure and Applied Geophysics, 148 (1-2):
  • [46] Tube wave modeling by the finite-difference method with varying grid spacing
    Falk, J
    Tessmer, E
    Gajewski, D
    PURE AND APPLIED GEOPHYSICS, 1996, 148 (1-2) : 77 - 93
  • [47] Optimal variable-grid finite-difference modeling for porous media
    Liu, Xinxin
    Yin, Xingyao
    Li, Haishan
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2014, 11 (06)
  • [48] Numeric simulation by grid-various finite-difference elastic wave equation
    Institute of Petroleum Exploration, SINOPEC, No.31, Xueyuan Road, Beijing 100083, China
    Shiyou Diqiu Wuli Kantan, 2007, 6 (634-639): : 634 - 639
  • [49] A staggered-grid lowrank finite-difference method for elastic wave extrapolation
    Du, Qizhen
    Ba, Jing
    Han, Dong
    Sun, Pengyuan
    Zhang, Jianlei
    ANNALS OF GEOPHYSICS, 2020, 63 (03) : 1 - 20
  • [50] Least squares staggered-grid finite-difference for elastic wave modelling
    Yang, Lei
    Yan, Hongyong
    Liu, Hong
    EXPLORATION GEOPHYSICS, 2014, 45 (04) : 255 - 260