Blue, green, and turquoise pathways for minimizing hydrogen production costs from steam methane reforming with CO2 capture

被引:46
|
作者
Pruvost, Florian [1 ]
Cloete, Schalk [2 ]
del Pozo, Carlos Arnaiz [3 ]
Zaabout, Abdelghafour [2 ,4 ]
机构
[1] Toulouse INP ENSIACET, Genie Chim, Toulouse, France
[2] SINTEF Ind, Proc Technol Dept, Trondheim, Norway
[3] Univ Politecn Madrid, Dept Ingn Energet, Madrid, Spain
[4] SINTEF Ind, Flow Technol Grp, SP Andersens Vei 15 B, N-7031 Trondheim, Norway
关键词
Hydrogen production; Steam methane reforming; CO2; capture; Methane pyrolysis; Techno-economic assessment; BED REACTORS;
D O I
10.1016/j.enconman.2022.116458
中图分类号
O414.1 [热力学];
学科分类号
摘要
Rising climate change ambitions require large-scale clean hydrogen production in the near term. "Blue" hydrogen from conventional steam methane reforming (SMR) with pre-combustion CO2 capture can fulfil this role. This study therefore presents techno-economic assessments of a range of SMR process configurations to minimize hydrogen production costs. Results showed that pre-combustion capture can avoid up to 80% of CO2 emissions cheaply at 35 euro/ton, but the final 20% of CO2 capture is much more expensive at a marginal CO2 avoidance cost around 150 euro/ton. Thus, post-combustion CO2 capture should be a better solution for avoiding the final 20% of CO2. Furthermore, an advanced heat integration scheme that recovers most of the steam conden-sation enthalpy before the CO2 capture unit can reduce hydrogen production costs by about 6%. Two hybrid hydrogen production options were also assessed. First, a "blue-green" hydrogen plant that uses clean electricity to heat the reformer achieved similar hydrogen production costs to the pure blue configuration. Second, a "blue-turquoise" configuration that replaces the pre-reformer with molten salt pyrolysis for converting higher hy-drocarbons to a pure carbon product can significantly reduce costs if carbon has a similar value to hydrogen. In conclusion, conventional pre-combustion CO2 capture from SMR is confirmed as a good solution for kickstarting the hydrogen economy, and it can be tailored to various market conditions with respect to CO2, electricity, and pure carbon prices.
引用
收藏
页数:12
相关论文
共 50 条
  • [32] Optimization of H2 production with CO2 capture by steam reforming of methane integrated with a chemical-looping combustion system
    Pans, Miguel A.
    Abad, Alberto
    de Diego, Luis F.
    Garcia-Labiano, Francisco
    Gayan, Pilar
    Adanez, Juan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (27) : 11878 - 11892
  • [33] Thermodynamic analysis of autothermal steam and CO2 reforming of methane
    Li, Yunhua
    Wang, Yaquan
    Zhang, Xiangwen
    Mi, Zhentao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (10) : 2507 - 2514
  • [34] Hydrogen production from steam reforming of simulated bio-oil over Ce-Ni/Co catalyst with in continuous CO2 capture
    Xie, Huaqing
    Yu, Qingbo
    Wei, Mengqi
    Duan, Wenjun
    Yao, Xin
    Qin, Qin
    Zuo, Zongliang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (03) : 1420 - 1428
  • [35] Feasibility Study of In Situ CO2 Capture on an Integrated Catalytic CO2 Sorbent for Hydrogen Production from Methane
    Belova, Anuta Anuta G.
    Yegulalp, Tuncel M.
    Yee, Christopher T.
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 749 - 755
  • [36] Syngas Production from CO2 Reforming and CO2-steam Reforming of Methane over Ni/Ce-SBA-15 Catalyst
    Tan, J. S.
    Danh, H. T.
    Singh, S.
    Truong, Q. D.
    Setiabudi, H. D.
    Vo, D-V N.
    29TH SYMPOSIUM OF MALAYSIAN CHEMICAL ENGINEERS (SOMCHE) 2016, 2017, 206
  • [37] CO-free production of hydrogen via stepwise steam reforming of methane
    Choudhary, TV
    Goodman, DW
    JOURNAL OF CATALYSIS, 2000, 192 (02) : 316 - 321
  • [38] Sorbent enhanced hydrogen production from steam gasification of coal integrated with CO2 capture
    Sedghkerdar, Mohammad Hashem
    Mostafavi, Ehsan
    Mahinpey, Nader
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (30) : 17001 - 17008
  • [39] Hydrogen production with CO2 capture
    Voldsund, Mari
    Jordal, Kristin
    Anantharaman, Rahul
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (09) : 4969 - 4992
  • [40] Simulation modelling of hydrogen production from steam reforming of methane and biogas
    Kumar, Ravindra
    Kumar, Anil
    Pal, Amit
    FUEL, 2024, 362