All solvable extensions of a class of nilpotent Lie algebras of dimension n and degree of nilpotency n-1

被引:19
|
作者
Snobl, L. [1 ]
Winternitz, P. [2 ,3 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague 1, Czech Republic
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
[3] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CASIMIR-OPERATORS; TRIANGULAR NILRADICALS; ABELIAN NILRADICALS; MOVING COFRAMES; INVARIANTS;
D O I
10.1088/1751-8113/42/10/105201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct all solvable Lie algebras with a specific n-dimensional nilradical n(n,2) (of degree of nilpotency n - 1 and with an (n - 2)-dimensional maximal Abelian ideal). We find that for given n such a solvable algebra is unique up to isomorphisms. Using the method of moving frames we construct a basis for the Casimir invariants of the nilradical n(n,2). We also construct a basis for the generalized Casimir invariants of its solvable extension s(n+1) consisting entirely of rational functions of the chosen invariants of the nilradical.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Nilpotency of n-Tuple Lie Algebras and Associative n-Tuple Algebras
    Koreshkov, N. A.
    RUSSIAN MATHEMATICS, 2010, 54 (02) : 28 - 32
  • [22] On Classification of (n+5)-Dimensional Nilpotent n-Lie Algebras of Class Two
    Hoseini, Zahra
    Saeedi, Farshid
    Darabi, Hamid
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (04) : 939 - 949
  • [23] On the multiplier of nilpotent n-Lie algebras
    Eshrati, M.
    Saeedi, F.
    Darabi, H.
    JOURNAL OF ALGEBRA, 2016, 450 : 162 - 172
  • [24] Capable n-Lie algebras and the classification of nilpotent n-Lie algebras with s(A)=3
    Darabi, Hamid
    Saeedi, Farshid
    Eshrati, Mehdi
    JOURNAL OF GEOMETRY AND PHYSICS, 2016, 110 : 25 - 29
  • [25] Nilpotent Lie algebras of class 4 with the derived subalgebra of dimension 3
    Johari, Farangis
    Niroomand, Peyman
    Parvizi, Mohsen
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (02) : 521 - 532
  • [26] Partial N=2→N=1 local supersymmetry breaking and solvable Lie algebras
    Fre, P
    Girardello, L
    Pesando, I
    Trigiante, M
    GAUGE THEORIES, APPLIED SUPERSYMMETRY AND QUANTUM GRAVITY II, 1997, : 279 - 286
  • [27] Extensions of n-Hom Lie algebras
    Ruipu Bai
    Ying Li
    Frontiers of Mathematics in China, 2015, 10 : 511 - 522
  • [28] Extensions of n-Hom Lie algebras
    Bai, Ruipu
    Li, Ying
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (03) : 511 - 522
  • [29] Upper bounds on the dimension of the Schur Lie-multiplier of Lie-nilpotent Leibniz n-algebras
    Bogmis, Narcisse G. Bell
    Biyogmam, Guy R.
    Safa, Hesam
    Tcheka, Calvin
    COMMUNICATIONS IN ALGEBRA, 2025,
  • [30] Characterization of capable nilpotent n-Lie algebras of class two by their Schur multipliers
    Hoseini, Zahra
    Saeedi, Farshid
    Darabi, Hamid
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2019, 68 (03) : 541 - 551