A bilevel programming approach to double optimal stopping

被引:1
|
作者
Makasu, Cloud [1 ]
机构
[1] Univ Western Cape, Dept Maths & Appl Maths, ZA-7535 Bellville, South Africa
关键词
Bilevel programming problem; Double optimal stopping problem; Integral options;
D O I
10.1016/j.amc.2014.04.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper treats a class of double optimal stopping problems arising in the pricing of integral options. Under certain conditions, we give an explicit form of the double stopping time for such type of optimal stopping problems. The present results are essentially derived by solving a certain nonlinear bilevel programming problem explicitly. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:393 / 396
页数:4
相关论文
共 50 条
  • [21] Managing Product Transitions: A Bilevel Programming Approach
    Khorramfar, Rahman
    Ozaltin, Osman Y.
    Kempf, Karl G.
    Uzsoy, Reha
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (05) : 2828 - 2844
  • [22] Linear programming formulation for optimal stopping problems
    Cho, MJ
    Stockbridge, RH
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 40 (06) : 1965 - 1982
  • [23] DOUBLE OPTIMAL STOPPING IN THE FISHING PROBLEM
    Karpowicz, Anna
    JOURNAL OF APPLIED PROBABILITY, 2009, 46 (02) : 415 - 428
  • [24] Optimal double stopping time problem
    Kobylanski, Magdalena
    Quenez, Marie-Claire
    Rouy-Mironescu, Elisabeth
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (1-2) : 65 - 69
  • [25] OPTIMAL DOUBLE STOPPING OF A BROWNIAN BRIDGE
    Baurdoux, Erik J.
    Chen, Nan
    Surya, Budhi A.
    Yamazaki, Kazutoshi
    ADVANCES IN APPLIED PROBABILITY, 2015, 47 (04) : 1212 - 1234
  • [26] Semivectorial bilevel programming versus scalar bilevel programming
    Dempe, Stephan
    Mehlitz, Patrick
    OPTIMIZATION, 2020, 69 (04) : 657 - 679
  • [27] Determining optimal pollution control policies: An application of bilevel programming
    Amouzegar, MA
    Moshirvaziri, K
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1999, 119 (01) : 100 - 120
  • [28] Optimal Allocation of Shared Manufacturing Resources Based on Bilevel Programming
    Liu, Peng
    Liu, Caiyun
    Wei, Xiaoling
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [29] Analyzing the Vulnerabilities in a Transshipment Network: A Bilevel Programming Approach
    Kaslmoglu, Fatih
    Bayeg, Selami
    Utku, Durdu Hakan
    IEEE ACCESS, 2023, 11 : 57635 - 57651
  • [30] A Duality Approach for a Class of Semivectorial Bilevel Programming Problems
    Aboussoror, Abdelmalek
    Adly, Samir
    Saissi, Fatima Ezzahra
    VIETNAM JOURNAL OF MATHEMATICS, 2018, 46 (01) : 197 - 214