Time of occurrence observable in quantum mechanics

被引:38
|
作者
Brunetti, R
Fredenhagen, K
机构
[1] Univ Naples Federico II, Dipartimento Sci Fisiche, Com Univ Monte Sant Angelo, I-80126 Naples, Italy
[2] Univ Hamburg, Inst Theoret Phys 2, D-22761 Hamburg, Germany
来源
PHYSICAL REVIEW A | 2002年 / 66卷 / 04期
关键词
D O I
10.1103/PhysRevA.66.044101
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a general construction of an observable measuring the time of occurrence of an effect in quantum theory. Time delay in potential scattering theory is computed as a straightforward application.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Arrival time in quantum mechanics
    Muga, JG
    Leavens, CR
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 338 (04): : 353 - 438
  • [32] Time, quantum mechanics, and probability
    Saunders, S
    SYNTHESE, 1998, 114 (03) : 373 - 404
  • [33] Time dependence in quantum mechanics
    J.S. Briggs
    J.M. Rost
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2000, 10 : 311 - 318
  • [34] Time dependence in quantum mechanics
    Briggs, JS
    Rost, JM
    EUROPEAN PHYSICAL JOURNAL D, 2000, 10 (03): : 311 - 318
  • [35] Time in classical and in quantum mechanics
    Elci, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (28)
  • [36] Quantum mechanics, time and ontology
    Allori, Valia
    STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2019, 66 : 145 - 154
  • [37] Time operator in quantum mechanics
    Wang Zhi-Yong
    Xiong Cai-Dong
    ACTA PHYSICA SINICA, 2007, 56 (06) : 3070 - 3075
  • [38] Time Asymmetric Quantum Mechanics
    Bohm, Arno R.
    Gadella, Manuel
    Kielanowski, Piotr
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
  • [39] Discrete time in quantum mechanics
    Bruce, S
    PHYSICAL REVIEW A, 2001, 64 (01):
  • [40] Arrival time in quantum mechanics
    Delgado, V
    Muga, JG
    PHYSICAL REVIEW A, 1997, 56 (05): : 3425 - 3435