On the normal scalar curvature conjecture in Kenmotsu statistical manifolds

被引:8
|
作者
Bansal, Pooja [1 ]
Uddin, Siraj [2 ]
Shahid, Mohammad Hasan [1 ]
机构
[1] Jamia Millia Islamia, Dept Math, New Delhi 110025, India
[2] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
关键词
DDVV conjecture; Wintgen inequality; Normal scalar curvature; Statistical manifold; Kenmotsu statistical manifold; Dual connections; GENERALIZED WINTGEN INEQUALITY; SUBMANIFOLDS;
D O I
10.1016/j.geomphys.2019.03.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove DDVV conjecture (the generalized Wintgen inequality) for statistical submanifolds of Kenmotsu statistical manifolds of constant phi-sectional curvature. Further, we give some applications of derived inequality. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 46
页数:10
相关论文
共 50 条
  • [31] Curvature Identities Special Generalized Manifolds Kenmotsu Second Kind
    Abu-Saleem, A.
    Rustanov, A. R.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2015, 9 (02): : 187 - 207
  • [32] Curvature Properties of η-Ricci Solitons on Para-Kenmotsu Manifolds
    Singh, Abhishek
    Kishor, Shyam
    KYUNGPOOK MATHEMATICAL JOURNAL, 2019, 59 (01): : 149 - 161
  • [33] ON GENERALIZED PROJECTIVE CURVATURE TENSOR OF PARA-KENMOTSU MANIFOLDS
    Raghuwanshi, Teerathram
    Pandey, Giteshwari
    Pandey, Manoj Kumar
    Goyal, Anil
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (01) : 383 - 394
  • [34] Curvature Properties of Almost Kenmotsu Manifolds with Generalized Nullity Conditions
    Wang, Yaning
    Wang, Wenjie
    FILOMAT, 2016, 30 (14) : 3807 - 3816
  • [35] Bounds for Statistical Curvatures of Submanifolds in Kenmotsu-like Statistical Manifolds
    Siddiqui, Aliya Naaz
    Siddiqi, Mohd Danish
    Alkhaldi, Ali Hussain
    MATHEMATICS, 2022, 10 (02)
  • [36] On Compact Manifolds with Harmonic Curvature and Positive Scalar Curvature
    Fu, Hai-Ping
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (04) : 3120 - 3139
  • [37] On Compact Manifolds with Harmonic Curvature and Positive Scalar Curvature
    Hai-Ping Fu
    The Journal of Geometric Analysis, 2017, 27 : 3120 - 3139
  • [38] SCALAR CURVATURE ON COMPACT COMPLEX MANIFOLDS
    Yang, Xiaokui
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (03) : 2073 - 2087
  • [39] STRUCTURE OF MANIFOLDS WITH POSITIVE SCALAR CURVATURE
    SCHOEN, R
    YAU, ST
    MANUSCRIPTA MATHEMATICA, 1979, 28 (1-3) : 159 - 183
  • [40] Scalar curvature and uniruledness on projective manifolds
    Heier, Gordon
    Wong, Bun
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2012, 20 (04) : 751 - 764