Granger Causal Inference from Spiking Observations via Latent Variable Modeling

被引:0
|
作者
Khosravi, Sahar [1 ]
Rupasinghe, Anuththara [1 ]
Babadi, Behtash [1 ]
机构
[1] Univ Maryland, Syst Res Inst, Dept Elect & Comp Engn, College Pk, MD 20742 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
D O I
10.1109/IEEECONF56349.2022.10051886
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Extracting directional connectivity in a neuronal ensemble from spiking observations is a key challenge in understanding the circuit mechanisms of brain function. Existing methods proceed in two stages, by first estimating the latent processes that govern spiking, followed by characterizing connectivity using said estimates. As such, the extracted networks in the second stage are highly sensitive to the accuracy of the estimates in the first stage. In this work, we introduce a framework to directly extract Granger causal links from spiking observations, without requiring intermediate time-domain estimation, by explicitly modeling the endogenous and exogenous latent processes that underlie spiking activity. Our proposed method integrates several techniques such as point processes, state-space modeling and Polya-Gamma augmentation. We demonstrate the utility of our proposed approach using simulated data and application to real data from the rat brain during sleep.
引用
收藏
页码:618 / 622
页数:5
相关论文
共 50 条
  • [21] Latent Variable Copula Inference for Bundle Pricing from Retail Transaction Data
    Letham, Benjamin
    Sun, Wei
    Sheopuri, Anshul
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 1), 2014, 32
  • [23] Estimating treatment effects from single-arm trials via latent-variable modeling
    Haussmann, Manuel
    Tran Minh Son Le
    Halla-aho, Viivi
    Kurki, Samu
    Leinonen, Jussi, V
    Koskinen, Miika
    Kaski, Samuel
    Lahdesmaki, Harri
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [24] Inference for the Number of Topics in the Latent Dirichlet Allocation Model via Bayesian Mixture Modeling
    Chen, Zhe
    Doss, Hani
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2019, 28 (03) : 567 - 585
  • [25] Examining Intermediate Omitted Levels in Hierarchical Designs via Latent Variable Modeling
    Raykov, Tenko
    Patelis, Thanos
    Marcoulides, George A.
    Lee, Chun-Lung
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2016, 23 (01) : 111 - 115
  • [26] Joint learning of multiple Granger causal networks via non-convex regularizations: Inference of group-level brain connectivity
    Manomaisaowapak, Parinthorn
    Songsiri, Jitkomut
    NEURAL NETWORKS, 2022, 149 : 157 - 171
  • [27] Comparison of strategies for scalable causal discovery of latent variable models from mixed data
    Raghu V.K.
    Ramsey J.D.
    Morris A.
    Manatakis D.V.
    Sprites P.
    Chrysanthis P.K.
    Glymour C.
    Benos P.V.
    International Journal of Data Science and Analytics, 2018, 6 (1) : 33 - 45
  • [28] Evaluation of estimation, prediction and inference for autocorrelated latent variable modeling of binary data-a simulation study
    Hutmacher, Matthew M.
    JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2016, 43 (03) : 275 - 289
  • [29] Multivariate Effect Size Estimation: Confidence Interval Construction via Latent Variable Modeling
    Raykov, Tenko
    Marcoulides, George A.
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2010, 35 (04) : 407 - 421
  • [30] RCANet: Root Cause Analysis via Latent Variable Interaction Modeling for Yield Improvement
    Zhang, Xiaopeng
    Hu, Shoubo
    Chen, Zhitang
    Zhu, Shengyu
    Young, Evangeline F. Y.
    Li, Pengyun
    Chen, Cheng
    Huang, Yu
    Hao, Jianye
    2022 IEEE INTERNATIONAL TEST CONFERENCE (ITC), 2022, : 100 - 107