Machine Learning in Drug Metabolism Study

被引:3
|
作者
Sinha, Krishnendu [1 ]
Ghosh, Jyotirmoy [2 ]
Sil, Parames Chandra [3 ,4 ]
机构
[1] Jhargram Raj Coll, Dept Zool, Jhargram 721507, India
[2] Banwarilal Bhalotia Coll, Dept Chem, Asansol 713303, India
[3] Bose Inst, Dept Div Mol Med, Kolkata 700054, India
[4] Bose Inst, Div Mol Med, Kolkata 700054, India
关键词
Machine learning; algorithms; deep learning; drug metabolism; metabolites; molecular docking; PHASE-I; PREDICTION; FUTURE; MECHANISMS; DISCOVERY; TOXICITY; NETWORK; MODELS; WEB;
D O I
10.2174/1389200224666221227094144
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Metabolic reactions in the body transform the administered drug into metabolites. These metabolites exhibit diverse biological activities. Drug metabolism is the major underlying cause of drug overdose-related toxicity, adversative drug effects and the drug's reduced efficacy. Though metabolic reactions deactivate a drug, drug metabolites are often considered pivotal agents for off-target effects or toxicity. On the other side, in combination drug therapy, one drug may influence another drug's metabolism and clearance and is thus considered one of the primary causes of drug-drug interactions. Today with the advancement of machine learning, the metabolic fate of a drug candidate can be comprehensively studied throughout the drug development procedure. Naive Bayes, Logistic Regression, k-Nearest Neighbours, Decision Trees, different Boosting and Ensemble methods, Support Vector Machines and Artificial Neural Network boosted Deep Learning are some machine learning algorithms which are being extensively used in such studies. Such tools are covering several attributes of drug metabolism, with an emphasis on the prediction of drug-drug interactions, drug-target-interactions, clinical drug responses, metabolite predictions, sites of metabolism, etc. These reports are crucial for evaluating metabolic stability and predicting prospective drug-drug interactions, and can help pharmaceutical companies accelerate the drug development process in a less resource-demanding manner than what in vitro studies offer. It could also help medical practitioners to use combinatorial drug therapy in a more resourceful manner. Also, with the help of the enormous growth of deep learning, traditional fields of computational drug development like molecular interaction fields, molecular docking, quantitative structure-to-activity relationship (QSAR) studies and quantum mechanical simulations are producing results which were unimaginable couple of years back. This review provides a glimpse of a few contextually relevant machine learning algorithms and then focuses on their outcomes in different studies.
引用
收藏
页码:1012 / 1026
页数:15
相关论文
共 50 条
  • [31] Machine Learning Drug Side Effects
    不详
    ATLA-ALTERNATIVES TO LABORATORY ANIMALS, 2020, 48 (04): : 140 - 140
  • [32] Machine Learning Techniques and Drug Design
    Gertrudes, J. C.
    Maltarollo, V. G.
    Silva, R. A.
    Oliveira, P. R.
    Honorio, K. M.
    da Silva, A. B. F.
    CURRENT MEDICINAL CHEMISTRY, 2012, 19 (25) : 4289 - 4297
  • [33] Machine Learning Methods in Drug Discovery
    Patel, Lauv
    Shukla, Tripti
    Huang, Xiuzhen
    Ussery, David W.
    Wang, Shanzhi
    MOLECULES, 2020, 25 (22):
  • [34] Machine learning applications in drug development
    Reda, Clemence
    Kaufmann, Emilie
    Delahaye-Duriez, Andree
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 241 - 252
  • [35] Machine Learning for Drug Overdose Surveillance
    Neill, Daniel B.
    Herlands, William
    JOURNAL OF TECHNOLOGY IN HUMAN SERVICES, 2018, 36 (01) : 8 - 14
  • [36] Machine Learning and Deep Learning Strategies in Drug Repositioning
    Wang, Fei
    Ding, Yulian
    Lei, Xiujuan
    Liao, Bo
    Wu, Fang-Xiang
    CURRENT BIOINFORMATICS, 2022, 17 (03) : 217 - 237
  • [37] Trends and Potential of Machine Learning and Deep Learning in Drug Study at Single-Cell Level
    Qi, Ren
    Zou, Quan
    RESEARCH, 2023, 6
  • [38] Predicting drug metabolism and pharmacokinetics features of in-house compounds by a hybrid machine-learning model
    Sasahara, Katsunori
    Shibata, Masakazu
    Sasabe, Hiroyuki
    Suzuki, Tomoki
    Takeuchi, Kenji
    Umehara, Ken
    Kashiyama, Eiji
    DRUG METABOLISM AND PHARMACOKINETICS, 2021, 39
  • [39] Machine learning models for the prediction of xeniobiotic metabolism
    Kops, Christina de Bruyn
    Sicho, Martin
    Plonka, Wojtek
    Mazzolari, Angelica
    Kochev, Nikolay
    Jeliazkova, Nina
    Pedretti, Alessandro
    Svozil, Daniel
    Testa, Bernard
    Vistoli, Giulio
    Kirchmair, Johannes
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [40] Applied Machine Learning Toward Drug Discovery Enhancement: Leishmaniases as a Case Study
    Harigua-Souiai, Emna
    Oualha, Rafeh
    Souiai, Oussama
    Abdeljaoued-Tej, Ines
    Guizani, Ikram
    BIOINFORMATICS AND BIOLOGY INSIGHTS, 2022, 16