On the classical dynamics of billiards on the sphere

被引:5
|
作者
Spina, ME [1 ]
Saraceno, M [1 ]
机构
[1] Comis Nacl Energia Atom, Dept Phys, RA-1429 Buenos Aires, DF, Argentina
来源
关键词
D O I
10.1088/0305-4470/32/44/315
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the classical motion in bidimensional polygonal billiards on the sphere. In particular we investigate the dynamics in tiling and generic rational and irrational equilateral triangles. Unlike the plane or the negative curvature cases we obtain a complex but regular dynamics.
引用
收藏
页码:7803 / 7813
页数:11
相关论文
共 50 条
  • [31] Exploration dynamics in polygonal billiards
    Hasegawa, M
    STATISTICAL PHYSICS, 2000, 519 : 368 - 370
  • [32] Classical integrable systems and billiards related to generalized Jacobians
    Fedorov, Y
    ACTA APPLICANDAE MATHEMATICAE, 1999, 55 (03) : 251 - 301
  • [33] Classical billiards and double-slit quantum interference
    Fonte, G.
    Zerbo, B.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2012, 127 (01): : 1 - 13
  • [34] Evolution of classical projected phase space density in billiards
    Debabrata Biswas
    Pramana, 2005, 64 : 563 - 575
  • [35] From quantum spectra to classical orbits: the rectangular billiards
    Lu, J
    Du, ML
    ACTA PHYSICA SINICA, 2004, 53 (08) : 2450 - 2453
  • [36] Quantum and classical solutions for a free particle in wedge billiards
    Góngora-T, A
    José, JV
    Schaffner, S
    Tiesinga, PHE
    PHYSICS LETTERS A, 2000, 274 (3-4) : 117 - 122
  • [37] Stability of classical electron orbits in triangular electron billiards
    Linke, H
    Christensson, L
    Omling, P
    Lindelof, PE
    PHYSICAL REVIEW B, 1997, 56 (03) : 1440 - 1446
  • [38] Quantum algorithmic integrability: The metaphor of classical polygonal billiards
    Mantica, G
    PHYSICAL REVIEW E, 2000, 61 (06): : 6434 - 6443
  • [39] Classical billiards and double-slit quantum interference
    G. Fonte
    B. Zerbo
    The European Physical Journal Plus, 127
  • [40] TANGENT MAP FOR CLASSICAL BILLIARDS IN MAGNETIC-FIELDS
    MEPLAN, O
    BRUT, F
    GIGNOUX, C
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (02): : 237 - 246