A remark on fractional p-Kirchhoff problems involving multiple zeros

被引:0
|
作者
Xiang, Mingqi [1 ]
Zhang, Binlin [2 ]
机构
[1] Civil Aviat Univ China, Coll Sci, Tianjin, Peoples R China
[2] Heilongjiang Inst Technol, Dept Math, Harbin, Heilongjiang, Peoples R China
关键词
Fractional p-Laplacian; degenerate Kirchhoff problems; multiplicity of solutions; asymptotic behavior of solutions; POSITIVE SOLUTIONS; EXISTENCE; LAPLACIAN; EQUATIONS;
D O I
10.1080/17476933.2019.1571052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the multiplicity of solutions for a p-Kirchhoff type problem driven by a nonlocal integro-differential operator. As a particular case, we consider the following problem: M (integral integral(R2N) vertical bar u(x) - u(y)vertical bar(p)/vertical bar x - y vertical bar(N+sp) dx dy + integral(RN) V(x)vertical bar u vertical bar(p) dx) ((-Delta)(s)(p)u + V(x)vertical bar u vertical bar(p-2)u) = f(lambda)(x, u) in R-N, where (-Delta)(s)(p) is the fractional p-Laplacian, 0 < s < 1 < p < infinity with sp < N, p*(s) = Np/(N - sp), M : [0, infinity) -> [0, infinity) is a continuous function vanishing in many different points, V : R-N -> (0, infinity) is a continuous function, and f(lambda): R-N x R -> R is a Caratheodory function for each lambda > 0. Under some suitable assumptions, we obtain the multiplicity of solutions for the above problem by applying the mountain pass theorem. Moreover, the asymptotic behavior of solutions is also investigated. A distinguished feature of this paper is that the Kirchhoff function M has multiple zeros.
引用
收藏
页码:1655 / 1665
页数:11
相关论文
共 50 条
  • [21] SOLUTIONS OF HOMOGENEOUS FRACTIONAL p-KIRCHHOFF EQUATIONS IN RN
    Vu Ho
    Nhat Vy Huynh
    Phuong Le
    MISKOLC MATHEMATICAL NOTES, 2019, 20 (02) : 957 - 968
  • [22] Existence of at least k solutions to a fractional p-Kirchhoff problem involving singularity and critical exponent
    Ghosh, Sekhar
    Choudhuri, Debajyoti
    Fiscella, Alessio
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2025, : 1012 - 1039
  • [23] Infinitely Many Solutions for Fractional p-Kirchhoff Equations
    Yang, Libo
    An, Tianqing
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (03)
  • [24] Solvability of a nonlocal fractional p-Kirchhoff type problem
    Bouabdallah, Mohamed
    Chakrone, Omar
    Chehabi, Mohammed
    Zuo, Jiabin
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (08) : 3971 - 3985
  • [25] A perturbed fractional p-Kirchhoff problem with critical nonlinearity
    Appolloni, Luigi
    Fiscella, Alessio
    Secchi, Simone
    ASYMPTOTIC ANALYSIS, 2023, 133 (1-2) : 159 - 183
  • [26] FRACTIONAL WEIGHTED p-KIRCHHOFF EQUATIONS WITH GENERAL NONLINEARITY
    Xiang, Mingqi
    Song, Chaoqun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (11): : 3350 - 3368
  • [27] Infinitely Many Solutions for Fractional p-Kirchhoff Equations
    Libo Yang
    Tianqing An
    Mediterranean Journal of Mathematics, 2018, 15
  • [28] Fractional p-Kirchhoff system with sign changing nonlinearities
    Pawan Kumar Mishra
    K. Sreenadh
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 281 - 296
  • [29] Fractional p-Kirchhoff system with sign changing nonlinearities
    Mishra, Pawan Kumar
    Sreenadh, K.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (01) : 281 - 296
  • [30] Solvability of a nonlocal fractional p-Kirchhoff type problem
    Mohamed Bouabdallah
    Omar Chakrone
    Mohammed Chehabi
    Jiabin Zuo
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 3971 - 3985