A remark on fractional p-Kirchhoff problems involving multiple zeros

被引:0
|
作者
Xiang, Mingqi [1 ]
Zhang, Binlin [2 ]
机构
[1] Civil Aviat Univ China, Coll Sci, Tianjin, Peoples R China
[2] Heilongjiang Inst Technol, Dept Math, Harbin, Heilongjiang, Peoples R China
关键词
Fractional p-Laplacian; degenerate Kirchhoff problems; multiplicity of solutions; asymptotic behavior of solutions; POSITIVE SOLUTIONS; EXISTENCE; LAPLACIAN; EQUATIONS;
D O I
10.1080/17476933.2019.1571052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the multiplicity of solutions for a p-Kirchhoff type problem driven by a nonlocal integro-differential operator. As a particular case, we consider the following problem: M (integral integral(R2N) vertical bar u(x) - u(y)vertical bar(p)/vertical bar x - y vertical bar(N+sp) dx dy + integral(RN) V(x)vertical bar u vertical bar(p) dx) ((-Delta)(s)(p)u + V(x)vertical bar u vertical bar(p-2)u) = f(lambda)(x, u) in R-N, where (-Delta)(s)(p) is the fractional p-Laplacian, 0 < s < 1 < p < infinity with sp < N, p*(s) = Np/(N - sp), M : [0, infinity) -> [0, infinity) is a continuous function vanishing in many different points, V : R-N -> (0, infinity) is a continuous function, and f(lambda): R-N x R -> R is a Caratheodory function for each lambda > 0. Under some suitable assumptions, we obtain the multiplicity of solutions for the above problem by applying the mountain pass theorem. Moreover, the asymptotic behavior of solutions is also investigated. A distinguished feature of this paper is that the Kirchhoff function M has multiple zeros.
引用
收藏
页码:1655 / 1665
页数:11
相关论文
共 50 条
  • [1] Nonhomogeneous fractional p-Kirchhoff problems involving a critical nonlinearity
    Zuo, Jiabin
    An, Tianqing
    Ye, Guoju
    Qiao, Zhenhua
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (41) : 1 - 15
  • [2] A FRACTIONAL p-KIRCHHOFF TYPE PROBLEM INVOLVING A PARAMETER
    Zuo, Jiabin
    An, Tianqing
    Li, Xiuzhen
    Ma, Yanying
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2019, 2019
  • [3] Qualitative Analysis of Solutions for Fractional p-Kirchhoff Problems Involving Critical Exponential Growth
    He, Rui
    Liang, Sihua
    Van Nguyen, Thin
    Zhang, Binlin
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (02)
  • [4] EXISTENCE RESULTS FOR SINGULAR FRACTIONAL p-KIRCHHOFF PROBLEMS
    向明启
    Vicent iu D.R?DULESCU
    张彬林
    Acta Mathematica Scientia, 2022, 42 (03) : 1209 - 1224
  • [5] EXISTENCE RESULTS FOR SINGULAR FRACTIONAL p-KIRCHHOFF PROBLEMS
    Xiang, Mingqi
    Radulescu, Vicentiu D.
    Zhang, Binlin
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (03) : 1209 - 1224
  • [6] Existence Results for Singular Fractional p-Kirchhoff Problems
    Mingqi Xiang
    Vicenţiu D. Rădulescu
    Binlin Zhang
    Acta Mathematica Scientia, 2022, 42 : 1209 - 1224
  • [7] Existence and multiple solutions for the critical fractional p-Kirchhoff type problems involving sign-changing weight functions
    Yang, Jie
    Chen, Haibo
    Liu, Senli
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (11) : 6546 - 6567
  • [8] Fractional p-Kirchhoff problems involving critical exponents and sign-changing weight functions
    Liang, Sihua
    Zhang, Binlin
    ASYMPTOTIC ANALYSIS, 2019, 115 (1-2) : 47 - 61
  • [9] A CRITICAL FRACTIONAL p-KIRCHHOFF TYPE PROBLEM INVOLVING DISCONTINUOUS NONLINEARITY
    Xiang, Mingqi
    Zhang, Binlin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (02): : 413 - 433
  • [10] Multiple solutions for a fractional p-Kirchhoff system with singular nonlinearity
    Wu, Zijian
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2024, (21) : 1 - 14