Quantifying Model Uncertainties in Complex Systems

被引:0
|
作者
Yang, Jiarui [1 ]
Duan, Jinqiao [1 ]
机构
[1] IIT, Dept Appl Math, Chicago, IL 60616 USA
来源
STOCHASTIC ANALYSIS WITH FINANCIAL APPLICATIONS, HONG KONG 2009 | 2011年 / 65卷
基金
美国国家科学基金会;
关键词
Model uncertainty; parameter estimation; Brownian motion (BM); fractional Brownian motion (fBM); Levy motion (LM); Hurst parameter; characteristic exponent; stochastic differential equations (SDEs); 1ST EXIT TIMES; DIFFUSION-COEFFICIENT; LIKELIHOOD-ESTIMATION; PARAMETER-ESTIMATION; ANOMALOUS DIFFUSION; POWER VARIATION; LEVY PROCESSES; DRIVEN; ESTIMATORS; INFERENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Uncertainties are abundant in complex systems. Appropriate mathematical models for these systems thus contain random effects or noises. The models are often in the form of stochastic differential equations, with some parameters to be determined by observations. The stochastic differential equations may be driven by Brownian motion, fractional Brownian motion, or Levy motion. After a brief overview of recent advances in estimating parameters in stochastic differential equations, various numerical algorithms for computing parameters are implemented. The numerical simulation results are shown to be consistent with theoretical analysis. Moreover, for fractional Brownian motion and alpha-stable Levy motion, several algorithms are reviewed and implemented to numerically estimate the Hurst parameter H and characteristic exponent alpha.
引用
收藏
页码:221 / 252
页数:32
相关论文
共 50 条
  • [21] Get on the BAND Wagon: a Bayesian framework for quantifying model uncertainties in nuclear dynamics
    Phillips, D. R.
    Furnstahl, R. J.
    Heinz, U.
    Maiti, T.
    Nazarewicz, W.
    Nunes, F. M.
    Plumlee, M.
    Pratola, M. T.
    Pratt, S.
    Viens, F. G.
    Wild, S. M.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2021, 48 (07)
  • [22] A random matrix approach for quantifying model-form uncertainties in turbulence modeling
    Xiao, Heng
    Wang, Jian-Xun
    Ghanem, Roger G.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 313 : 941 - 965
  • [23] Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
    Rijsdijk, Pieter
    Eskes, Henk
    Dingemans, Arlene
    Boersma, K. Folkert
    Sekiya, Takashi
    Miyazaki, Kazuyuki
    Houweling, Sander
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2025, 18 (02) : 483 - 509
  • [24] Quantifying uncertainties in the solar axion flux and their impact on determining axion model parameters
    Hoof, Sebastian
    Jaeckel, Joerg
    Thormaehlen, Lennert J.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (09):
  • [25] Quantifying inflow and RANS turbulence model form uncertainties for wind engineering flows
    Gorle, Catherine
    Garcia-Sanchez, Clara
    Iaccarino, Gianluca
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2015, 144 : 202 - 212
  • [26] State estimation in structural systems with model uncertainties
    Hernandez, Eric M.
    Bernal, Dionisio
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 2008, 134 (03): : 252 - 257
  • [27] An improved methodology for quantifying causality in complex ecological systems
    Solvang, Hiroko Kato
    Subbey, Sam
    PLOS ONE, 2019, 14 (01):
  • [28] Quantifying 'Causality' in Complex Systems: Understanding Transfer Entropy
    Razak, Fatimah Abdul
    Jensen, Henrik Jeldtoft
    PLOS ONE, 2014, 9 (06):
  • [29] Quantifying the Objective Cost of Uncertainty in Complex Dynamical Systems
    Yoon, Byung-Jun
    Qian, Xiaoning
    Dougherty, Edward R.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (09) : 2256 - 2266
  • [30] Quantifying Seismic Source Parameter Uncertainties
    Kane, Deborah L.
    Prieto, German A.
    Vernon, Frank L.
    Shearer, Peter M.
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2011, 101 (02) : 535 - 543