High Speed Comparator for the Moduli {2n, 2n-1, 2n+1}

被引:1
|
作者
Li, Lei [1 ]
Li, Guodong [1 ]
Zhao, Yingxu [1 ]
Yin, Pengsheng [1 ]
Zhou, Wanting [1 ]
机构
[1] Univ Elect Sci & Technol China, Res Inst Elect Sci & Technol, Chengdu 611731, Sichuan, Peoples R China
来源
IEICE ELECTRONICS EXPRESS | 2013年 / 10卷 / 21期
基金
中国国家自然科学基金;
关键词
Residue number systems (RNS); comparator; NUMBER SYSTEM; RESIDUE;
D O I
10.1587/elex.10.20130628
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
{2(n), 2(n) - 1, 2(n) + 1} is one of the most commonly used moduli in residue number systems. In this express, we propose a novel comparator for the moduli {2(n), 2(n) - 1, 2(n) + 1}. Based on the proposed architecture, we can design high speed comparator for the moduli {2(n), 2(n) - 1, 2(n) + 1}, which is the fastest among all known comparators for the moduli {2(n), 2(n) - 1, 2(n) + 1}. The performance of the proposed comparator is evaluated and compared with the earlier fast comparators for the moduli {2(n), 2n - 1, 2n + 1}, based on a simple gate-count and gate-delay model. The proposed comparator can improve the state-of-art by 8% on the average in terms of area and 6% on the average in terms of performance delay.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A Unified {2n-1, 2n, 2n+1} RNS Scaler with Dual Scaling Constants
    Low, Jeremy Yung Shern
    Tay, Thian Fatt
    Chang, Chip-Hong
    2012 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS), 2012, : 296 - 299
  • [32] New efficient residue-to-binary converters for 4-moduli set {2n-1, 2n, 2n+1, 2n+1-1}
    Cao, B
    Chang, CH
    Srikanthan, T
    PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL IV: DIGITAL SIGNAL PROCESSING-COMPUTER AIDED NETWORK DESIGN-ADVANCED TECHNOLOGY, 2003, : 536 - 539
  • [33] Adder based residue to binary number converters for (2n-1, 2n, 2n+1)
    Wang, Y
    Song, XY
    Aboulhamid, M
    Shen, H
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (07) : 1772 - 1779
  • [34] Reverse converters for the moduli sets {22N-1, 2N, 22N+1} and {2N-3, 2N+1, 2N-1, 2N+3}
    Mohan, PVA
    2004 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING & COMMUNICATIONS (SPCOM), 2004, : 188 - 192
  • [35] {2n+1, 2n+k, 2n-1} :: A new RNS moduli set extension
    Chaves, R
    Sousa, L
    PROCEEDINGS OF THE EUROMICRO SYSTEMS ON DIGITAL SYSTEM DESIGN, 2004, : 210 - 217
  • [36] Efficient 1-out-of-3 Binary Signed-Digit Multiplier for the moduli set {2n-1, 2n, 2n+1}
    Saremi, Maryam
    Timarchi, Somayeh
    2013 17TH CSI INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND DIGITAL SYSTEMS (CADS 2013), 2013, : 123 - 124
  • [37] MRC-Based RNS Reverse Converters for the Four-Moduli Sets {2n+1, 2n-1, 2n, 22n+1-1} and {2n+1, 2n-1, 22n, 22n+1-1} (vol 59, pg 244, 2012)
    Sousa, Leonel
    Antao, Samuel
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2012, 59 (05) : 317 - 317
  • [38] Low-Complexity Sign Detection Algorithm for RNS {2n-1, 2n, 2n+1}
    Xu, Minghe
    Ya, Ruohe
    Luo, Fei
    IEICE TRANSACTIONS ON ELECTRONICS, 2012, E95C (09): : 1552 - 1556
  • [39] Reverse Converters for the Moduli Set {{2n, 2n-1-1, 2n-1, 2n+1-1}( n Even)
    Mohan, P. V. Ananda
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (08) : 3605 - 3634
  • [40] Area Efficient Memoryless Reverse Converter for New Four Moduli Set {2n-1, 2n-1, 2n+1, 22n+1,-1}
    Jaiswal, Ritesh Kumar
    Kumar, Raj
    Mishra, Ram Awadh
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2018, 27 (05)