Acetone-butanol-ethanol fermentation of corn stover by Clostridium species: present status and future perspectives

被引:25
|
作者
Li, Jianzheng [1 ]
Baral, Nawa Raj [1 ,2 ]
Jha, Ajay Kumar [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Sch Municipal & Environm Engn, Harbin 150090, Peoples R China
[2] Tribhuvan Univ, Inst Engn, Dept Mech Engn, Kathmandu, Nepal
来源
基金
中国国家自然科学基金;
关键词
Bio-butanol; Corn stover; Fermentation pathways; Clostridium species; Microbial inhibitor; Optimization; BEIJERINCKII BA101; STRAW HYDROLYSATE; TOLERANT STRAIN; WHEAT-STRAW; PART I; ACETOBUTYLICUM; BIOMASS; FIBER; OPTIMIZATION; PRETREATMENT;
D O I
10.1007/s11274-013-1542-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Sustainable vehicle fuel is indispensable in future due to worldwide depletion of fossil fuel reserve, oil price fluctuation and environmental degradation. Microbial production of butanol from renewable biomass could be one of the possible options. Renewable biomass such as corn stover has no food deficiency issues and is also cheaper in most of the agricultural based countries. Thus it can effectively solve the existing issue of substrate cost. In the last 30 years, a few of Clostridium strains have been successfully implemented for biobutanol fermentation. However, the commercial production is hindered due to their poor tolerance to butanol and inhibitors. Metabolic engineering of Clostridia strains is essential to solve above problems and ultimately enhance the solvent production. An effective and efficient pretreatment of raw material as well as optimization of fermentation condition could be another option. Furthermore, biological approaches may be useful to optimize both the host and pathways to maximize butanol production. In this context, this paper reviews the existing Clostridium strains and their ability to produce butanol particularly from corn stover. This study also highlights possible fermentation pathways and biological approaches that may be useful to optimize fermentation pathways. Moreover, challenges and future perspectives are also discussed.
引用
收藏
页码:1145 / 1157
页数:13
相关论文
共 50 条
  • [41] Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans
    Zhiqiang Wen
    Mianbin Wu
    Yijun Lin
    Lirong Yang
    Jianping Lin
    Peilin Cen
    Microbial Cell Factories, 13
  • [42] Butanol Production from Soybean Hull and Soy Molasses by Acetone-Butanol-Ethanol Fermentation
    Dong, Jie
    Du, Yinming
    Zhou, Yipin
    Yang, Shang-Tian
    SOY-BASED CHEMICALS AND MATERIALS, 2014, 1178 : 25 - 41
  • [43] Process optimization of acetone-butanol-ethanol fermentation integrated with pervaporation for enhanced butanol production
    Liu, Li
    Wang, Yancui
    Wang, Na
    Chen, Xiaomiao
    Li, Baoguo
    Shi, Jiping
    Li, Xiang
    BIOCHEMICAL ENGINEERING JOURNAL, 2021, 173
  • [44] Acetone-butanol-ethanol Fermentation and Isoflavone Extraction Using Kudzu Roots
    Wang, Lan
    Chen, Hongzhang
    BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, 2011, 16 (04) : 739 - 745
  • [45] Lignocellulosic Biomass-A Sustainable Feedstock for Acetone-Butanol-Ethanol Fermentation
    Mahalingam, Lorianna
    Abdulla, Rahmath
    Sani, Suraya Abdul
    Sabullah, Mohd Khalizan
    Faik, Ainol Azifa Mohd
    Misson, Mailin
    PERIODICA POLYTECHNICA-CHEMICAL ENGINEERING, 2022, 66 (02) : 279 - 296
  • [46] Kinetic study of substrate dependency for higher butanol production in acetone-butanol-ethanol fermentation
    Shinto, Hideaki
    Tashiro, Yukihiro
    Kobayashi, Genta
    Sekiguchi, Tatsuya
    Hanai, Taizo
    Kuriya, Yuki
    Okamoto, Masahiro
    Sonomoto, Kenji
    PROCESS BIOCHEMISTRY, 2008, 43 (12) : 1452 - 1461
  • [47] Continuous acetone-butanol-ethanol production by corn stalk immobilized cells
    Zhang, Yuedong
    Ma, Yujiu
    Yang, Fangxiao
    Zhang, Chunhui
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2009, 36 (08) : 1117 - 1121
  • [48] Biobutanol Production from Acetone-Butanol-Ethanol Fermentation: Developments and Prospects
    Lin, Zhangnan
    Cong, Wei
    Zhang, Jian'an
    FERMENTATION-BASEL, 2023, 9 (09):
  • [49] Bioreactors and in situ product recovery techniques for acetone-butanol-ethanol fermentation
    Li, Si-Yu
    Chiang, Chung-Jen
    Tseng, I-Ting
    He, Chi-Ruei
    Chao, Yun-Peng
    FEMS MICROBIOLOGY LETTERS, 2016, 363 (13)
  • [50] Acetone-butanol-ethanol fermentation and isoflavone extraction using kudzu roots
    Lan Wang
    Hongzhang Chen
    Biotechnology and Bioprocess Engineering, 2011, 16 : 739 - 745