Blind sensor calibration using approximate message passing

被引:4
|
作者
Schuelke, Christophe [1 ,2 ]
Caltagirone, Francesco [3 ,4 ]
Zdeborova, Lenka [5 ,6 ]
机构
[1] Univ Paris 07, Sorbonne Paris Cite, F-75013 Paris, France
[2] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[3] Ecole Normale Super, CNRS, Lab Phys Stat, UMR 8550, F-75231 Paris, France
[4] Univ Paris 06, F-75231 Paris, France
[5] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France
[6] CNRS, URA 2306, F-91191 Gif Sur Yvette, France
关键词
message-passing algorithms; statistical inference;
D O I
10.1088/1742-5468/2015/11/P11013
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The ubiquity of approximately sparse data has led a variety of communities to take great interest in compressed sensing algorithms. Although these are very successful and well understood for linear measurements with additive noise, applying them to real data can be problematic if imperfect sensing devices introduce deviations from this ideal signal acquisition process, caused by sensor decalibration or failure. We propose a message passing algorithm called calibration approximate message passing (Cal-AMP) that can treat a variety of such sensor-induced imperfections. In addition to deriving the general form of the algorithm, we numerically investigate two particular settings. In the first, a fraction of the sensors is faulty, giving readings unrelated to the signal. In the second, sensors are decalibrated and each one introduces a different multiplicative gain to the measurements. Cal-AMP shares the scalability of approximate message passing, allowing us to treat large sized instances of these problems, and experimentally exhibits a phase transition between domains of success and failure.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] Energy Efficient Sparse Bayesian Learning using Learned Approximate Message Passing
    Thomas, Christo Kurisummoottil
    Mundlamuri, Rakesh
    Murthy, Chandra R.
    Kountouris, Marios
    SPAWC 2021: 2021 IEEE 22ND INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC 2021), 2020, : 271 - 275
  • [42] Message-Passing Algorithms for Channel Estimation and Decoding Using Approximate Inference
    Badiu, Mihai-A
    Kirkelund, Gunvor E.
    Manchon, Carles Navarro
    Riegler, Erwin
    Fleury, Bernard H.
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [43] COMPRESSIVE IMAGING USING APPROXIMATE MESSAGE PASSING AND A CAUCHY PRIOR IN THE WAVELET DOMAIN
    Hill, P. R.
    Kim, J-H.
    Basarab, A.
    Kouame, D.
    Bull, D. R.
    Achim, A.
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 2514 - 2518
  • [44] Compressive Imaging using Approximate Message Passing and a Markov-Tree Prior
    Som, Subhojit
    Potter, Lee C.
    Schniter, Philip
    2010 CONFERENCE RECORD OF THE FORTY FOURTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2010, : 243 - 247
  • [45] ULTRASOUND IMAGE RECONSTRUCTION FROM COMPRESSED MEASUREMENTS USING APPROXIMATE MESSAGE PASSING
    Kim, J-H.
    Basarab, A.
    Hill, P. R.
    Bull, D. R.
    Kouame, D.
    Achim, A.
    2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 557 - 561
  • [46] Compressive Imaging Using Approximate Message Passing and a Markov-Tree Prior
    Som, Subhojit
    Schniter, Philip
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (07) : 3439 - 3448
  • [47] Sparse or Dense - Message Passing (MP) or Approximate Message Passing (AMP) for Compressed Sensing Signal Recovery
    Mahmood, Asad
    Kang, Jaewook, Jr.
    Lee, HeungNo
    2013 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING (PACRIM), 2013, : 259 - 264
  • [48] Graph-based approximate message passing iterations
    Gerbelot, Cedric
    Berthier, Raphael
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2023, 12 (04) : 2562 - 2628
  • [49] Sketched Clustering via Hybrid Approximate Message Passing
    Byrne, Evan
    Chatalic, Antoine
    Gribonval, Remi
    Schniter, Philip
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (17) : 4556 - 4569
  • [50] Semidefinite Programs Simulate Approximate Message Passing Robustly
    Ivkov, Misha
    Schramm, Tselil
    PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 348 - 357