Blind sensor calibration using approximate message passing

被引:4
|
作者
Schuelke, Christophe [1 ,2 ]
Caltagirone, Francesco [3 ,4 ]
Zdeborova, Lenka [5 ,6 ]
机构
[1] Univ Paris 07, Sorbonne Paris Cite, F-75013 Paris, France
[2] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[3] Ecole Normale Super, CNRS, Lab Phys Stat, UMR 8550, F-75231 Paris, France
[4] Univ Paris 06, F-75231 Paris, France
[5] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France
[6] CNRS, URA 2306, F-91191 Gif Sur Yvette, France
关键词
message-passing algorithms; statistical inference;
D O I
10.1088/1742-5468/2015/11/P11013
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The ubiquity of approximately sparse data has led a variety of communities to take great interest in compressed sensing algorithms. Although these are very successful and well understood for linear measurements with additive noise, applying them to real data can be problematic if imperfect sensing devices introduce deviations from this ideal signal acquisition process, caused by sensor decalibration or failure. We propose a message passing algorithm called calibration approximate message passing (Cal-AMP) that can treat a variety of such sensor-induced imperfections. In addition to deriving the general form of the algorithm, we numerically investigate two particular settings. In the first, a fraction of the sensors is faulty, giving readings unrelated to the signal. In the second, sensors are decalibrated and each one introduces a different multiplicative gain to the measurements. Cal-AMP shares the scalability of approximate message passing, allowing us to treat large sized instances of these problems, and experimentally exhibits a phase transition between domains of success and failure.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Phase Diagram and Approximate Message Passing for Blind Calibration and Dictionary Learning
    Krzakala, Florent
    Mezard, Marc
    Zdeborova, Lenka
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 659 - +
  • [2] Vector Approximate Message Passing
    Rangan, Sundeep
    Schniter, Philip
    Fletcher, Alyson K.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (10) : 6664 - 6684
  • [3] Memory Approximate Message Passing
    Liu, Lei
    Huang, Shunqi
    Kurkoski, Brian M.
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 1379 - 1384
  • [4] Vector Approximate Message Passing
    Rangan, Sundeep
    Schniter, Philip
    Fletcher, Alyson K.
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 1588 - 1592
  • [5] Hybrid Approximate Message Passing
    Rangan, Sundeep
    Fletcher, Alyson K.
    Goyal, Vivek K.
    Byrne, Evan
    Schniter, Philip
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (17) : 4577 - 4592
  • [6] On Convergence of Approximate Message Passing
    Caltagirone, Francesco
    Zdeborova, Lenka
    Krzakala, Florent
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 1812 - 1816
  • [7] Sparse Bayesian Learning Using Approximate Message Passing
    Al-Shoukairi, Maher
    Rao, Bhaskar
    CONFERENCE RECORD OF THE 2014 FORTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2014, : 1957 - 1961
  • [8] Convolutional Approximate Message-Passing
    Takeuchi, Keigo
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 (27) : 416 - 420
  • [9] Weighted and Reweighted Approximate Message Passing
    Ghadermarzy, Navid
    Yilmaz, Oezguer
    WAVELETS AND SPARSITY XV, 2013, 8858
  • [10] A Unifying Tutorial on Approximate Message Passing
    Feng, Oliver Y.
    Venkataramanan, Ramji
    Rush, Cynthia
    Samworth, Richard J.
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2022, 15 (04): : 335 - 536