Reduction of threading dislocations in InGaN/GaN double heterostructure through the introduction of low-temperature GaN intermediate layer

被引:8
|
作者
Yoon, DH
Lee, KS
Yoo, JB
Seong, TY
机构
[1] Elect & Telecommun Res Inst, Telecommun Basic Res Inst, Yuseong Gu, Taejon 305350, South Korea
[2] Sungkyunkwan Univ, Dept Mat Engn, Suwon 440746, South Korea
[3] Kwangju Inst Sci & Technol, Dept Mat Sci & Engn, Kwangju 500712, South Korea
关键词
InGaN; MOCVD; LT-GaN; threading dislocation; TEM; AFM; SIMS;
D O I
10.1143/JJAP.41.1253
中图分类号
O59 [应用物理学];
学科分类号
摘要
The reduction mechanism of threading dislocation at the interface of InGaN/low-temperature GaN (LT-GaN) layers was investigated by atomic force microscopy, transmission electron microscopy and secondary ion mass spectroscopy measurements. Introducing the LT-GaN intermediate layer onto the InGaN active layer not only prevented indium evaporation during the growth of the p-GaN layer but also suppressed the propagation of threading dislocations from InGaN to p-GaN. The propagation of threading dislocations is reduced by the formation of two-dimensional lateral islands, and further defect generation is prevented by the formation of InxGa1-xN alloy due to the relaxation of lattice mismatch between active InGaN and p-GaN.
引用
收藏
页码:1253 / 1258
页数:6
相关论文
共 50 条
  • [31] Low-temperature time-resolved photoluminescence in InGaN/GaN quantum wells
    Andrianov, AV
    Nekrasov, VY
    Shmidt, NM
    Zavarin, EE
    Usikov, AS
    Zinov'ev, NN
    Tkachuk, MN
    SEMICONDUCTORS, 2002, 36 (06) : 641 - 646
  • [32] Low-temperature time-resolved photoluminescence in InGaN/GaN quantum wells
    A. V. Andrianov
    V. Yu. Nekrasov
    N. M. Shmidt
    E. E. Zavarin
    A. S. Usikov
    N. N. Zinov’ev
    M. N. Tkachuk
    Semiconductors, 2002, 36 : 641 - 646
  • [33] GaN ultraviolet photodetector with a low-temperature AlN cap layer
    Chang, S. J.
    Yu, C. L.
    Chang, P. C.
    Lin, Y. C.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (06) : H196 - H198
  • [34] Inserting a low-temperature n-GaN underlying layer to separate nonradiative recombination centers improves the luminescence efficiency of blue InGaN/GaN LEDs
    Lin, Ray-Ming
    Lin, Yung-Hsiang
    Chiang, Chung-Hao
    Lai, Mu-Jen
    Chou, Yi-Lun
    Lu, Yuan-Chieh
    Kuo, Shou-Yi
    Fang, Bor-Ren
    Wu, Meng-Chyi
    MICROELECTRONICS RELIABILITY, 2010, 50 (05) : 679 - 682
  • [35] AIN/GaN heterostructure prepared using a low-temperature helicon sputtering system
    Wu, J. D.
    Chien, W. C.
    Kao, H. L.
    Chyi, J.-I.
    Hsu, C.-H.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2007, 204 (10): : 3349 - 3353
  • [36] Investigation of low-temperature electroluminescence of InGaN/GaN based nanorod light emitting arrays
    Huang, Ying-Yuan
    Chen, Liang-Yi
    Chang, Chun-Hsiang
    Sun, Yu-Hsuan
    Cheng, Yun-Wei
    Ke, Min-Yung
    Lu, Yu-Hsin
    Kuo, Hao-Chung
    Huang, JianJang
    NANOTECHNOLOGY, 2011, 22 (04)
  • [37] Effect of low-temperature GaN buffer layer on the crystalline quality of subsequent GaN layers grown by MOVPE
    Hoshino, K.
    Yanagita, N.
    Araki, M.
    Tadatomo, K.
    JOURNAL OF CRYSTAL GROWTH, 2007, 298 : 232 - 234
  • [38] From GaN to ZnGa2O4 through a Low-Temperature Process: Nanotube and Heterostructure Arrays
    Lu, Ming-Yen
    Zhou, Xiang
    Chiu, Cheng-Yao
    Crawford, Samuel
    Gradecak, Silvija
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (02) : 882 - 887
  • [39] GaN ultraviolet photosensors capped by low-temperature aluminium nitride layer
    Chang, P. C.
    APPLIED PHYSICS LETTERS, 2007, 91 (05)
  • [40] The roles of low-temperature buffer layer for thick GaN growth on sapphire
    Lee, H. J.
    Lee, S. W.
    Goto, H.
    Lee, Hyo-Jong
    Ha, Jun-Seok
    Fujii, K.
    Cho, M. W.
    Yao, T.
    Hong, S. K.
    JOURNAL OF CRYSTAL GROWTH, 2008, 310 (05) : 920 - 923