Association of β-1,3-N-acetylglucosaminyltransferase 1 and β-1,4-galactosyltransferase 1, trans-Golgi enzymes involved in coupled poly-N-acetyllactosamine synthesis

被引:26
|
作者
Lee, Peter L. [1 ]
Kohler, Jennifer J. [2 ]
Pfeffer, Suzanne R. [1 ]
机构
[1] Stanford Univ, Dept Biochem, Sch Med, Stanford, CA 94305 USA
[2] Univ Texas SW Med Ctr Dallas, Div Translat Res, Dept Internal Med, Dallas, TX 75390 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
endoplasmic reticulum; enzyme complexes; glycosyltransferase; Golgi complex; poly-N-acetyllactosamine; MEMBRANE-SPANNING DOMAIN; I-EXTENSION ENZYME; COMPLEX-FORMATION; SACCHAROMYCES-CEREVISIAE; ENDOPLASMIC-RETICULUM; TRANSMEMBRANE DOMAIN; RETENTION SIGNAL; CYTOPLASMIC TAIL; HEPARAN-SULFATE; KIN RECOGNITION;
D O I
10.1093/glycob/cwp035
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Poly-N-acetyllactosamine (polyLacNAc) is a linear carbohydrate polymer composed of alternating N-acetylglucosamine and galactose residues involved in cellular functions ranging from differentiation to metastasis. PolyLacNAc also serves as a scaffold on which other oligosaccharides such as sialyl Lewis X are displayed. The polymerization of the alternating N-acetylglucosamine and galactose residues is catalyzed by the successive action of UDP-GlcNAc:beta Gal beta-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) and UDP-Gal:beta GlcNAc beta-1,4-galactosyltransferase, polypeptide 1 (B4GALT1), respectively. The functional association between these two glycosyltransferases led us to investigate whether the enzymes also associate physically. We show that B3GNT1 and B4GALT1 colocalize by immunofluorescence microscopy, interact by coimmunoprecipitation, and affect each other's subcellular localization when one of the two proteins is artificially retained in the endoplasmic reticulum. These results demonstrate that B3GNT1 and B4GALT1 physically associate in vitro and in cultured cells, providing insight into possible mechanisms for regulation of polyLacNAc production.
引用
收藏
页码:655 / 664
页数:10
相关论文
共 50 条
  • [31] Molecular cloning and expression analysis of a mouse UDP-GlcNAc:Gal(β1-4)Glc(NAc)-R β1,3-N-acetylglucosaminyltransferase homologous to Drosophila melanogaster Brainiac and the β1,3-galactosyltransferase family
    Egan, S
    Cohen, B
    Sarkar, M
    Ying, Y
    Cohen, S
    Singh, N
    Wang, W
    Flock, G
    Goh, T
    Schachter, H
    GLYCOCONJUGATE JOURNAL, 2000, 17 (12) : 867 - 875
  • [32] Molecular cloning and expression analysis of a mouse UDP-GlcNAc:Gal(β1-4)Glc(NAc)-R β1,3-N-acetylglucosaminyltransferase homologous to Drosophila melanogaster Brainiac and the β1,3-galactosyltransferase family
    Sean Egan
    Brenda Cohen
    Mohan Sarkar
    Yi Ying
    Samuel Cohen
    Nita Singh
    Wei Wang
    Grace Flock
    Theo Goh
    Harry Schachter
    Glycoconjugate Journal, 2000, 17 : 867 - 875
  • [33] Characterization of the substrate specificity of α1,3galactosyltransferase utilizing modified N-acetyllactosamine disaccharides
    Stults, CLM
    Macher, BA
    Bhatti, R
    Srivastava, OP
    Hindsgaul, O
    GLYCOBIOLOGY, 1999, 9 (07) : 661 - 668
  • [34] Comparison of the N-linked glycosylation of human β1,3-N-acetylglucosaminyltransferase 2 expressed in insect cells and silkworm larvae
    Dojima, Takashi
    Nishina, Takuya
    Kato, Tatsuya
    Uno, Btsuyoshi
    Yagi, Hirokazu
    Kato, Koichi
    Park, Enoch Y.
    JOURNAL OF BIOTECHNOLOGY, 2009, 143 (01) : 27 - 33
  • [35] Complex-type biantennary N-glycans of recombinant human transferrin from Trichoplusia ni insect cells expressing mammalian β-1,4-galactosyltransferase and β-1,2-N-acetylglucosaminyltransferase II
    Tomiya, N
    Howe, D
    Aumiller, JJ
    Pathak, M
    Park, J
    Palter, KB
    Jarvis, DL
    Betenbaugh, MJ
    Lee, YC
    GLYCOBIOLOGY, 2003, 13 (01) : 23 - 34
  • [36] Combining carbochips and mass spectrometry to study the donor specificity for the Neisseria meningitidis β1,3-N-acetylglucosaminyltransferase LgtA
    Guan, Wanyi
    Ban, Lan
    Cai, Li
    Li, Lei
    Chen, Wenlan
    Liu, Xianwei
    Mrksich, Milan
    Wang, Peng George
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2011, 21 (17) : 5025 - 5028
  • [37] Structure-based evolutionary relationship of glycosyltransferases: a case study of vertebrate β1,4-galactosyltransferase, invertebrate β1,4-N-acetylgalactosaminyltransferase and α-polypeptidyl-N-acetylgalactosaminyltransferase
    Ramakrishnan, Boopathy
    Qasba, Pradman K.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2010, 20 (05) : 536 - 542
  • [38] The effects of N-glycosylation sites and the N-terminal region on the biological function of β1,3-N-acetylglucosaminyltransferase 2 and its secretion
    Kato, T
    Suzuki, M
    Murata, T
    Park, EY
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2005, 329 (02) : 699 - 705
  • [39] UDP-N-acetyl-α-D-glucosamine as acceptor substrate of β-1,4-galactosyltransferase.: Enzymatic synthesis of UDP-N-acetyllactosamine
    Elling, L
    Zervosen, A
    Gallego, RG
    Nieder, V
    Malissard, M
    Berger, EG
    Vliegenthart, JFG
    Kamerling, JP
    GLYCOCONJUGATE JOURNAL, 1999, 16 (07) : 327 - 336
  • [40] Structure and substrate specificity of human β1,3-N-acetylglucosaminyltransferase 2 (B3GNT2)
    Yang, Jeong-Yeh
    Kadirvelraj, Renuka
    Kim, Hyunwoo
    Sanders, Justin H.
    Boruah, Bhargavi M.
    Chapla, Digantkumar
    Ramiah, Annapoorani
    Kim, Rosemary
    Wood, Zachary A.
    Moremen, Kelley W.
    GLYCOBIOLOGY, 2018, 28 (12) : 1033 - 1033