Solution of Moving Boundary Space-Time Fractional Burger's Equation

被引:17
|
作者
Abdel-Salam, E. A-B [1 ,2 ]
Yousif, E. A. [2 ,3 ]
Arko, Y. A. S. [2 ,4 ]
Gumma, E. A. E. [2 ,5 ]
机构
[1] Assiut Univ, Fac Sci, Dept Math, New Valley Branch, El Kharja 72511, Egypt
[2] Northern Border Univ, Dept Math, Fac Sci, Ar Ar 91431, Saudi Arabia
[3] Univ Khartoum, Fac Math Sci, Dept Appl Math, Khartoum 11111, Sudan
[4] Sudan Univ Sci & Technol, Fac Sci, Dept Math, Khartoum 11115, Sudan
[5] Int Univ Africa, Fac Appl & Pure Sci, Dept Math, Khartoum 14415, Sudan
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; FINITE-ELEMENT ALGORITHM; NUMERICAL-SOLUTION; WAVE SOLUTIONS; CALCULUS; FLOW; KDV;
D O I
10.1155/2014/218092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fractional Riccati expansion method is used to solve fractional differential equations with variable coefficients. To illustrate the effectiveness of the method, the moving boundary space-time fractional Burger's equation is studied. The obtained solutions include generalized trigonometric and hyperbolic function solutions. Among these solutions, some are found for the first time. The linear and periodic moving boundaries for the kink solution of the Burger's equation are presented graphically and discussed.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Space-Time Fractional Schrödinger Equation With Composite Time Fractional Derivative
    Johan L. A. Dubbeldam
    Zivorad Tomovski
    Trifce Sandev
    Fractional Calculus and Applied Analysis, 2015, 18 : 1179 - 1200
  • [42] A STOCHASTIC SOLUTION WITH GAUSSIAN STATIONARY INCREMENTS OF THE SYMMETRIC SPACE-TIME FRACTIONAL DIFFUSION EQUATION
    Pagnini, Gianni
    Paradisi, Paolo
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (02) : 408 - 440
  • [43] A SPACE-TIME SPECTRAL METHOD FOR THE TIME FRACTIONAL DIFFUSION EQUATION
    Li, Xianjuan
    Xu, Chuanju
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 2108 - 2131
  • [44] Approximate analytical solution of two-dimensional space-time fractional diffusion equation
    Pandey, Prashant
    Kumar, Sachin
    Gomez, Francisco
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (12) : 7194 - 7207
  • [45] Simultaneous inversion for the exponents of the fractional time and space derivatives in the space-time fractional diffusion equation
    Tatar, SalIh
    Tinaztepe, Ramazan
    Ulusoy, Suleyman
    APPLICABLE ANALYSIS, 2016, 95 (01) : 1 - 23
  • [46] On the space-time fractional Schrodinger equation with time independent potentials
    Baqer, Saleh
    Boyadjiev, Lyubomir
    PANORAMA OF MATHEMATICS: PURE AND APPLIED, 2016, 658 : 81 - 90
  • [47] A Stochastic Solution with Gaussian Stationary Increments of the Symmetric Space-Time Fractional Diffusion Equation
    Gianni Pagnini
    Paolo Paradisi
    Fractional Calculus and Applied Analysis, 2016, 19 : 408 - 440
  • [48] Numerical solution for a class of space-time fractional equation by the piecewise reproducing kernel method
    Wang, Yu-Lan
    Jia, Li-na
    Zhang, Hao-lu
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (10) : 2100 - 2111
  • [49] A fast solution technique for finite element discretization of the space-time fractional diffusion equation
    Liu, Zhengguang
    Cheng, Aijie
    Li, Xiaoli
    Wang, Hong
    APPLIED NUMERICAL MATHEMATICS, 2017, 119 : 146 - 163
  • [50] Analytical solution of the generalized space-time fractional ultra-hyperbolic differential equation
    Dorrego, Gustavo A.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2022, 33 (04) : 264 - 275