Solution of Moving Boundary Space-Time Fractional Burger's Equation

被引:17
|
作者
Abdel-Salam, E. A-B [1 ,2 ]
Yousif, E. A. [2 ,3 ]
Arko, Y. A. S. [2 ,4 ]
Gumma, E. A. E. [2 ,5 ]
机构
[1] Assiut Univ, Fac Sci, Dept Math, New Valley Branch, El Kharja 72511, Egypt
[2] Northern Border Univ, Dept Math, Fac Sci, Ar Ar 91431, Saudi Arabia
[3] Univ Khartoum, Fac Math Sci, Dept Appl Math, Khartoum 11111, Sudan
[4] Sudan Univ Sci & Technol, Fac Sci, Dept Math, Khartoum 11115, Sudan
[5] Int Univ Africa, Fac Appl & Pure Sci, Dept Math, Khartoum 14415, Sudan
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; FINITE-ELEMENT ALGORITHM; NUMERICAL-SOLUTION; WAVE SOLUTIONS; CALCULUS; FLOW; KDV;
D O I
10.1155/2014/218092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fractional Riccati expansion method is used to solve fractional differential equations with variable coefficients. To illustrate the effectiveness of the method, the moving boundary space-time fractional Burger's equation is studied. The obtained solutions include generalized trigonometric and hyperbolic function solutions. Among these solutions, some are found for the first time. The linear and periodic moving boundaries for the kink solution of the Burger's equation are presented graphically and discussed.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Analytical Approximate Solution of Space-Time Fractional Diffusion Equation with a Moving Boundary Condition
    Das, Subir
    Kumar, Rajnesh
    Gupta, Praveen Kumar
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (05): : 281 - 288
  • [2] Solution for a Space-time Fractional Diffusion Equation
    Liu, Qiyu
    Lv, Longjin
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON MODELLING, SIMULATION AND APPLIED MATHEMATICS (MSAM2017), 2017, 132 : 180 - 184
  • [3] Numerical solution for space and time fractional order Burger type equation
    Yokus, Asif
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (03) : 2085 - 2091
  • [4] Time-Space Fractional Burger's Equation on Time Scales
    Neamaty, A.
    Nategh, M.
    Agheli, B.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2017, 12 (03):
  • [5] Semianalytic Solution of Space-Time Fractional Diffusion Equation
    Elsaid, A.
    Shamseldeen, S.
    Madkour, S.
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 2016
  • [6] Space-Time Fractional DKP Equation and Its Solution
    Bouzid, N.
    Merad, M.
    FEW-BODY SYSTEMS, 2017, 58 (03)
  • [7] Formulation and solution of space-time fractional Boussinesq equation
    El-Wakil, S. A.
    Abulwafa, Essam M.
    NONLINEAR DYNAMICS, 2015, 80 (1-2) : 167 - 175
  • [8] Analytical solution of the space-time fractional hyperdiffusion equation
    Tawfik, Ashraf M.
    Fichtner, Horst
    Elhanbaly, A.
    Schlickeiser, Reinhard
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 510 : 178 - 187
  • [9] Space-Time Fractional DKP Equation and Its Solution
    N. Bouzid
    M. Merad
    Few-Body Systems, 2017, 58
  • [10] Nonperturbative analytical solution of the time fractional nonlinear Burger's equation
    Sutradhar, T.
    Datta, B. K.
    Bera, R. K.
    INDIAN JOURNAL OF PHYSICS, 2009, 83 (12) : 1681 - 1690