Detection & management of concept drift

被引:0
|
作者
Mak, Lee-Onn [1 ]
Krause, Paul [1 ]
机构
[1] Univ Surrey, Sch Elect & Phys Sci, Dept Comp, Surrey, England
关键词
concept drift; context; context derivation; Bayesian network classifiers;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Ability to correctly detect the location and derive the contextual information where a concept begins to drift is essential in the study of domains with changing context. This paper proposes a Top-down learning method with the incorporation of a learning accuracy mechanism to efficiently detect and manage context changes within a large dataset. With the utilisation of simple search operators to perform convergent search and JBNC with a graphical viewer to derive context information, the identified hidden context are shown with the location of the disjoint points, the contextual attributes that contribute to the concept drift, the graphical output of the true relationships between these attributes and the Boolean characterisation which is the context.
引用
收藏
页码:3486 / +
页数:2
相关论文
共 50 条
  • [41] Concept Drift Based on Subspace Learning for Intrusion Detection
    Wu, Bin
    Lin, Hai-Zhuo
    Feng, Lin
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND INFORMATION SYSTEMS, 2016, 52 : 421 - 425
  • [42] Concept drift detection and adaptation for federated and continual learning
    Casado, Fernando E.
    Lema, Dylan
    Criado, Marcos F.
    Iglesias, Roberto
    Regueiro, Carlos, V
    Barro, Senen
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (03) : 3397 - 3419
  • [43] Suitability of Different Metric Choices for Concept Drift Detection
    Hinder, Fabian
    Vaquet, Valerie
    Hammer, Barbara
    ADVANCES IN INTELLIGENT DATA ANALYSIS XX, IDA 2022, 2022, 13205 : 157 - 170
  • [44] Detection of Concept Drift for Learning from Stream Data
    Lee, Jeonghoon
    Magoules, Frederic
    2012 IEEE 14TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS & 2012 IEEE 9TH INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE AND SYSTEMS (HPCC-ICESS), 2012, : 241 - 245
  • [45] A Method Aware of Concept Drift for Online Botnet Detection
    Schwengber, Bruno Henrique
    Vergutz, Andressa
    Prates, Nelson G., Jr.
    Nogueira, Michele
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [46] The PerfSim Algorithm for Concept Drift Detection in Imbalanced Data
    Antwi, Daniel K.
    Viktor, Herna L.
    Japkowicz, Nathalie
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2012), 2012, : 619 - 628
  • [47] Preface to incremental clustering, concept drift and novelty detection
    Cuxac, Pascal
    Lamirel, Jean-Charles
    Lemaire, Vincent
    Mahmoud, Abou-Nasr
    Shadi, Al Shehabi
    Albatineh, Ahmed N.
    Cesare, Alippi
    Tomas, Arredondo
    Younes, Bennani
    Albert, Bifet
    Alexis, Bondu
    Guenael, Cabanes
    Nitesh, Chawla
    Chaomei, Chen
    Pascal, Cuxac
    Diallo, Abdoulaye B.
    Anass, El Haddadi
    Hugo, Escalante
    José, García-Rodríguez
    Wolfgang, Glanzel
    Barbara, Hammer
    Kumova, Bora I.
    Pascale, Kuntz-Cosperec
    Stephane, Lallich
    Jean-Charles, Lamirel
    Mustapha, Lebbah
    Vincent, Lemaire
    Philippe, Lenca
    Bin, Li
    Rebecca, Nuggent
    Florin, Popescu
    Manuel, Roveri
    Dan, Tamir
    Fabien, Torre
    Zhi-Hua, Zhou
    Tanguy, Urvoy
    Xingquan, Zhu
    Proceedings - IEEE 13th International Conference on Data Mining Workshops, ICDMW 2013, 2013,
  • [48] Concept drift detection and accelerated convergence of online learning
    Husheng Guo
    Hai Li
    Ni Sun
    Qiaoyan Ren
    Aijuan Zhang
    Wenjian Wang
    Knowledge and Information Systems, 2023, 65 : 1005 - 1043
  • [49] Fast concept drift detection using unlabeled data
    Shang, Dan
    Zhang, Guangquan
    Lu, Jie
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 133 - 140
  • [50] Concept drift detection and adaptation for federated and continual learning
    Fernando E. Casado
    Dylan Lema
    Marcos F. Criado
    Roberto Iglesias
    Carlos V. Regueiro
    Senén Barro
    Multimedia Tools and Applications, 2022, 81 : 3397 - 3419