Visualization Approaches for Evaluating Ridge Regression Estimators in Mixture and Mixture-Process Experiments

被引:6
|
作者
Jang, Dae-Heung [1 ]
Anderson-Cook, Christine M. [2 ]
机构
[1] Pukyong Natl Univ, Dept Stat, Busan, South Korea
[2] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA
关键词
multicollinearity; bias-variance trade-off; mixture-process experiments; DESIGN SPACE; PARAMETER; FRACTION;
D O I
10.1002/qre.1683
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
When the component proportions in mixture experiments are restricted by lower and upper bounds, the input space of a designed experiment space can become an irregular region that can induce multicollinearity problems when estimating the component proportion parameters. Thus, ridge regression provides a beneficial means of stabilizing the coefficient estimates in the fitted model. Previous research has focused on using prediction variance as a metric for determining an appropriate value of the ridge constant, k. We use visualization techniques to illustrate and evaluate ridge regression estimators and the robustness of estimation with respect to the variance and the bias. The addition of bias allows better balancing between the stability of the estimators and minimally changing the estimates. We illustrate the graphical methods with mixture and mixture-process examples from the literature. Copyright (C) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:1483 / 1494
页数:12
相关论文
共 50 条
  • [21] The construction of robust mixture-process experimental designs via genetic algorithm
    Limmun, Wanida
    Chomtee, Boonorm
    Borkowski, John J.
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2019, 35 (06) : 1582 - 1602
  • [22] A graphical evaluation of logistic ridge estimator in mixture experiments
    Akay, Kadri Ulas
    JOURNAL OF APPLIED STATISTICS, 2014, 41 (06) : 1217 - 1232
  • [23] I-optimal design of split-plot mixture-process variable experiments: A case study on potato crisps
    Reyniers, S.
    De Brier, N.
    Brijs, K.
    De Ketelaere, B.
    Akkermans, W.
    Matthijs, S.
    Delcour, J. A.
    Goos, P.
    FOOD QUALITY AND PREFERENCE, 2022, 101
  • [24] Product and Process Improvement Using Mixture-Process Variable Methods and Robust Optimization Techniques
    Sahni, Narinder Singh
    Piepel, Greg F.
    Naes, Tormod
    JOURNAL OF QUALITY TECHNOLOGY, 2009, 41 (02) : 181 - 197
  • [25] I-optimal design of split-plot mixture-process variable experiments: A case study on potato crisps
    Reyniers, S.
    De Brier, N.
    Brijs, K.
    De Ketelaere, B.
    Akkermans, W.
    Matthijs, S.
    Delcour, J. A.
    Goos, P.
    FOOD QUALITY AND PREFERENCE, 2022, 101
  • [26] Adaptive design of experiments based on Gaussian mixture regression
    Kaneko, Hiromasa
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2021, 208
  • [27] Markov Switching Dirichlet Process Mixture Regression
    Taddy, Matthew A.
    Kottas, Athanasios
    BAYESIAN ANALYSIS, 2009, 4 (04): : 793 - 815
  • [28] Evaluating Differential Effects Using Regression Interactions and Regression Mixture Models
    Van Horn, M. Lee
    Jaki, Thomas
    Masyn, Katherine
    Howe, George
    Feaster, Daniel J.
    Lamont, Andrea E.
    George, Melissa R. W.
    Kim, Minjung
    EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2015, 75 (04) : 677 - 714
  • [29] Unsupervised Liu-type shrinkage estimators for mixture of regression models
    Ghanem, Elsayed
    Hatefi, Armin
    Usefi, Hamid
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2024, 33 (08) : 1376 - 1391
  • [30] Combined mixture-process variable approach: a suitable statistical tool for nanovesicular systems optimization
    Habib, Basant A.
    AbouGhaly, Mohamed H. H.
    EXPERT OPINION ON DRUG DELIVERY, 2016, 13 (06) : 777 - 788