LOCAL ANTIMAGIC CHROMATIC NUMBER FOR THE CORONA PRODUCT OF WHEEL AND NULL GRAPHS

被引:2
|
作者
Shankar, R. [1 ]
Nalliah, M. Ch [1 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Dept Math, VIT, Vellore Campus,Tiruvalam Rd, Vellore 632014, Tamil Nadu, India
关键词
local antimagic labeling; local antimagic chromatic number; corona product; wheel graph;
D O I
10.35634/vm220308
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a graph of order p and size q having no isolated vertices. A bijection f : E -> {1, 2, 3,..., q} is called a local antimagic labeling if for all uv is an element of E, we have w(u) not equal w(v), the weight w(u) = Sigma(e is an element of E(u)) f(e), where E(u) is the set of edges incident to u. A graph G is local antimagic, if G has a local antimagic labeling. The local antimagic chromatic number chi(la)(G) is defined to be the minimum number of colors taken over all colorings of G induced by local antimagic labelings of G. In this paper, we completely determine the local antimagic chromatic number for the corona product of wheel and null graphs.
引用
收藏
页码:463 / 485
页数:23
相关论文
共 50 条
  • [41] The radio k-chromatic number for corona of graphs
    Niranjan, P. K.
    Kola, Srinivasa Rao
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (04)
  • [42] A Note on the b-Chromatic Number of Corona of Graphs
    Lisna, P. C.
    Sunitha, M. S.
    JOURNAL OF INTERCONNECTION NETWORKS, 2015, 15 (1-2)
  • [43] On edge chromatic number related to local antimagic labeling of some trees
    Agustin, I. H.
    Dafik
    Alfarisi, R.
    Kurniawati, E. Y.
    Marsidi
    FIRST INTERNATIONAL CONFERENCE ON ENVIRONMENTAL GEOGRAPHY AND GEOGRAPHY EDUCATION (ICEGE), 2019, 243
  • [44] The packing chromatic number of infinite product graphs
    Fiala, Jiri
    Klavzar, Sandi
    Lidicky, Bernard
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) : 1101 - 1113
  • [45] Game chromatic number of lexicographic product graphs
    Alagammai, R.
    Vijayalakshmi, V.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2015, 12 (2-3) : 216 - 220
  • [46] On the Locating Chromatic Number of the Cartesian Product of Graphs
    Behtoei, Ali
    Omoomi, Behnaz
    ARS COMBINATORIA, 2016, 126 : 221 - 235
  • [47] Chromatic number for a generalization of Cartesian product graphs
    Kral, Daniel
    West, Douglas B.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [48] Game chromatic number of strong product graphs
    Enomoto, Hikoe
    Fujisawa, Jun
    Matsumoto, Naoki
    DISCRETE MATHEMATICS, 2023, 346 (01)
  • [49] The Fractional Chromatic Number Of The Categorical Product Of Graphs
    Claude Tardif
    Combinatorica, 2005, 25 : 625 - 632
  • [50] On the fractional chromatic number and the lexicographic product of graphs
    Klavzar, S
    DISCRETE MATHEMATICS, 1998, 185 (1-3) : 259 - 263