Deep learning for finance: deep portfolios

被引:328
|
作者
Heaton, J. B. [1 ,4 ]
Polson, N. G. [2 ,4 ]
Witte, J. H. [3 ,4 ]
机构
[1] Bartlit Beck Herman Palenchar & Scott LLP, Chicago, IL 60654 USA
[2] Univ Chicago, Booth Sch Business, Chicago, IL 60637 USA
[3] Univ Oxford, Math Inst, Oxford, England
[4] GreyMaths Inc, Chicago, IL 60602 USA
关键词
deep learning; machine learning; big data; artificial intelligence; finance; asset pricing; volatility; deep frontier; NETWORKS;
D O I
10.1002/asmb.2209
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We explore the use of deep learning hierarchical models for problems in financial prediction and classification. Financial prediction problems - such as those presented in designing and pricing securities, constructing portfolios, and risk management - often involve large data sets with complex data interactions that currently are difficult or impossible to specify in a full economic model. Applying deep learning methods to these problems can produce more useful results than standard methods in finance. In particular, deep learning can detect and exploit interactions in the data that are, at least currently, invisible to any existing financial economic theory. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:3 / 12
页数:10
相关论文
共 50 条
  • [41] From Deep Learning to Deep Reasoning
    Truyen Tran
    Vuong Le
    Le, Hung
    Le, Thao M.
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 4076 - 4077
  • [42] Learn deep before deep learning
    Mayorga, Karina Martinez
    Gomez Jimenez, Gabriela
    Madariaga-Mazon, Abraham
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [43] LEARNING DEEP CLASSIFIERS WITH DEEP FEATURES
    Lei, Jie
    Song, Xinhui
    Sun, Li
    Song, Mingli
    Li, Na
    Chen, Chun
    2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2016,
  • [44] Deep learning
    Yann LeCun
    Yoshua Bengio
    Geoffrey Hinton
    Nature, 2015, 521 : 436 - 444
  • [45] Deep learning
    Nicole Rusk
    Nature Methods, 2016, 13 : 35 - 35
  • [46] Deep learning
    Hof, R.D., 1600, Massachusetts Institute of Technology (116):
  • [47] Deep Learning
    Kim, Kwang Gi
    HEALTHCARE INFORMATICS RESEARCH, 2016, 22 (04) : 351 - 354
  • [48] Deep learning
    Rousseau, Axel-Jan
    Geubbelmans, Melvi
    Burzykowski, Tomas
    Valkenborg, Dir
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2024, 165 (03) : 369 - 371
  • [49] Deep learning
    LeCun, Yann
    Bengio, Yoshua
    Hinton, Geoffrey
    NATURE, 2015, 521 (7553) : 436 - 444
  • [50] Deep Learning
    不详
    TECHNOLOGY REVIEW, 2013, 116 (04) : 8 - 8