Analysis of some mixed elements for the Stokes problem

被引:9
|
作者
Cheng, XL
Han, WM
Huang, HC
机构
[1] HONG KONG BAPTIST UNIV,DEPT MATH,KOWLOON,HONG KONG
[2] HANGZHOU UNIV,DEPT MATH,HANGZHOU 310028,PEOPLES R CHINA
[3] UNIV IOWA,DEPT MATH,IOWA CITY,IA 52242
关键词
Stokes problem; mixed finite elements; reduced integration penalty method; optimal order error estimates;
D O I
10.1016/S0377-0427(97)00120-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss some mixed finite element methods related to the reduced integration penalty method for solving the Stokes problem. We prove optimal order error estimates for bilinear-constant and biquadratic-bilinear velocity-pressure finite element solutions. The result for the biquadratic-bilinear element is new while that for the bilinear-constant element improves the convergence analysis of Johnson and Pitkaranta (1982). In the degenerate case when the penalty parameter is set to be zero, our results reduce to some related known results proved in by Brezzi and Fortin (1991) for the bilinear-constant element, and Bercovier and Pironneau (1979) for the biquadratic-bilinear element. Our theoretical results are consistent with the numerical results reported by Carey and Krishnan (1982) and Oden et al. (1982).
引用
收藏
页码:19 / 35
页数:17
相关论文
共 50 条
  • [41] Analysis of a momentum conservative mixed-FEM for the stationary Navier-Stokes problem
    Camano, Jessika
    Garcia, Carlos
    Oyarzua, Ricardo
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (05) : 2895 - 2923
  • [42] Refined mixed finite element methods for the Stokes problem
    ElBouzid, H
    Nicaise, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (11): : 1075 - 1080
  • [43] A mixed finite element method for the generalized Stokes problem
    Bustinza, R
    Gatica, GN
    González, M
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2005, 49 (08) : 877 - 903
  • [44] A new mixed formulation for a three field Stokes problem
    Wakrim, M
    Ghadi, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (02): : 167 - 171
  • [45] A new mixed finite element method for the Stokes problem
    Farhloul, M
    Zine, AM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (01) : 329 - 342
  • [46] On the dual-mixed formulation for an exterior Stokes problem
    Gatica, Gabriel N.
    Hsiao, George C.
    Meddahi, Salim
    Sayas, Francisco-Javier
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2013, 93 (6-7): : 437 - 445
  • [47] Mixed Isogeometric Finite Cell Methods for the Stokes problem
    Hoang, Thong
    Verhoosel, Clemens V.
    Auricchio, Ferdinando
    van Brummelen, E. Harald
    Reali, Alessandro
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 316 : 400 - 423
  • [48] A mixed spectral/wavelet method for the solution of the Stokes problem
    Garba, A
    JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 145 (01) : 297 - 315
  • [49] A mixed problem for the steady Navier-Stokes equations
    Russo, A.
    Starita, G.
    MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (3-4) : 681 - 688
  • [50] New mixed finite elements for plane elasticity and Stokes equations
    XiaoPing Xie
    JinChao Xu
    Science China Mathematics, 2011, 54 : 1499 - 1519