Review of hydro-instability experiments with alternate capsule supports in indirect-drive implosions on the National Ignition Facility

被引:27
|
作者
Smalyuk, V. A. [1 ]
Robey, H. F. [1 ]
Alday, C. L. [2 ]
Amendt, P. [1 ]
Aracne-Ruddle, C. [1 ]
Bigelow, J. R. [1 ]
Bunn, T. [1 ]
Casey, D. T. [1 ]
Chen, K. -C. [2 ]
Clark, D. S. [1 ]
Cortez, J. P. [3 ]
Crippen, J. [2 ]
Diaz, S. [2 ]
Farrell, M. [2 ]
Felker, S. [1 ]
Field, J. E. [1 ]
Jaquez, J. [2 ]
Johnson, S. [1 ]
Haan, S. W. [1 ]
Hammel, B. A. [1 ]
Hamza, A. V. [1 ]
Havre, M. O. [2 ]
Heinbockel, C. [1 ]
Hsing, W. W. [1 ]
Kangas, K. [2 ]
Kroll, J. J. [1 ]
Kucheyev, S. O. [1 ]
Landen, O. L. [1 ]
Lepro-Chavez, X. [1 ]
MacPhee, A. G. [1 ]
Martinez, D. A. [1 ]
Milovich, J. [1 ]
Nikroo, A. [1 ]
Pickworth, L. A. [1 ]
Rice, N. [2 ]
Stadermann, M. [1 ]
Steich, D. [1 ]
Weber, C. R. [1 ]
机构
[1] Lawrence Livermore Natl Lab, NIF Directorate, Livermore, CA 94550 USA
[2] Gen Atom, San Diego, CA 92186 USA
[3] Schafer Corp, 303 Lindbergh Ave, Livermore, CA 94551 USA
关键词
PELLET;
D O I
10.1063/1.5042081
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Hydrodynamic instability growth of capsule support membranes (or "tents") has been recognized as one of the major contributors to the performance degradation in high-compression plastic capsule implosions at the National Ignition Facility (NIF) [E. M. Campbell et al., AIP Conf. Proc. 429, 3 (1998)]. The capsules were supported by tents because the nominal 10-mu m diameter fill tubes were not strong enough to support capsules by themselves in indirect-drive implosions on NIF. After it was recognized that the tents had a significant impact of implosion's stability, new alternative support methods were investigated. While some of these methods completely eliminated tent, other concepts still used tents, but concentrated on mitigating their impact. The tentless methods included "fishing pole" reinforced fill tubes, cantilevered fill tubes, and thin-wire "tetra cage" supports. In the "fishing pole" concept, a 10-mu m fill tube was inserted inside 30-mu m fill tube for extra support with the connection point located 300 mu m away from the capsule surface. The cantilevered fill tubes were supported by 12-mu m thick SiC rods, offset by up to 300 mu m from the capsule surfaces. In the "tetra-cage" concept, 2.5-mu m thick wires (carbon nanotube yarns) were used to support a capsule. Other concepts used "polar tents" and a "foam-shell" to mitigate the effects of the tents. The "polar tents" had significantly reduced contact area between the tents and the capsule compared to the nominal tents. In the "foam-shell" concept, a 200-mu m thick, 30mg/cc SiO2 foam layer was used to offset the tents away from the capsule surface in an attempt to mitigate their effects. These concepts were investigated in x-ray radiography experiments and compared with perturbations from standard tent support. The measured perturbations in the "fishing pole," cantilevered fill tube, and "tetra-cage" concepts compared favorably with (were smaller than) nominal tent perturbations and were recommended for further testing for feasibility in layered DT implosions. The "polar tents" were tested in layered DT implosions with a relatively-stable "high-foot" drive showing an improvement in neutron yield in one experiment compared to companion implosions with nominal tents. This article reviews and summarizes recent experiments on these alternate capsule support concepts. In addition, the concept of magnetic levitation is also discussed. Published by AIP Publishing.
引用
收藏
页数:16
相关论文
共 27 条
  • [21] Present understanding of ignition and gain using indirect-drive inertial confinement fusion target designs on the US National Ignition Facility
    Hurricane, O. A.
    Allen, A.
    Bachmann, B. L.
    Baker, K. L.
    Baxamusa, S.
    Bhandarkar, S. D.
    Biener, J.
    Bionta, S. R. M.
    Braun, T.
    Briggs, T.
    Brunton, G.
    Casey, D. T.
    Chapman, T.
    Choate, C.
    Clark, D. S.
    Dewald, E.
    Dinicola, J-m
    Divol, L.
    Do, A.
    Fehrenbach, T.
    Fittinghoff, D. N.
    Gatu Johnson, M.
    Geppert Kleinrath, H.
    Geppert Kleinrath, V
    Haan, S.
    Hilsabeck, T. J.
    Hinkel, D. E.
    Hohenberger, M.
    Humbird, K. D.
    Izumi, N.
    Kong, C.
    Kritcher, A. L.
    Landen, O. L.
    Lindl, J.
    Macgowan, B. J.
    Mackinnon, A. J.
    Maclaren, S. A.
    Marinak, M.
    Meeuwsen, R.
    Michel, P.
    Milovich, J.
    Meaney, K.
    Millot, M.
    Moody, J. D.
    Moore, A. S.
    Nikroo, A.
    Nora, R.
    Pak, A.
    Ralph, J. E.
    Ratledge, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2025, 67 (01)
  • [22] An initial assessment of three-dimensional polar direct drive capsule asymmetries for implosions at the National Ignition Facility
    Krasheninnikova, Natalia S.
    Finnegan, Sean M.
    Schmitt, Mark J.
    PHYSICS OF PLASMAS, 2012, 19 (01)
  • [23] Probing the deep nonlinear stage of the ablative Rayleigh-Taylor instability in indirect drive experiments on the National Ignition Facility
    Casner, A.
    Masse, L.
    Liberatore, S.
    Loiseau, P.
    Masson-Laborde, P. E.
    Jacquet, L.
    Martinez, D.
    Moore, A. S.
    Seugling, R.
    Felker, S.
    Haan, S. W.
    Remington, B. A.
    Smalyuk, V. A.
    Farrell, M.
    Giraldez, E.
    Nikroo, A.
    PHYSICS OF PLASMAS, 2015, 22 (05)
  • [24] Effects of drive pulse shape on graded metal pushered single shell capsule implosions on the National Ignition Facility
    Dewald, E. L.
    Maclaren, S. A.
    Ho, D. d. -m.
    Martinez, D. A.
    Pino, J. E.
    Tipton, R. E.
    Young, C. V.
    Horwood, C.
    Divol, L.
    Rubery, M. S.
    Moore, A.
    Vazsonyi, A. R.
    Mellos, G.
    Montgomery, W.
    Smalyuk, V. A.
    Graziani, F.
    Monzon, E.
    Prisbrey, S. T.
    Whitley, H. D.
    Xu, H.
    Huang, H.
    Kong, C.
    Ratledge, M.
    Volegov, P.
    Freeman, M. S.
    Wilde, C.
    Meaney, K.
    PHYSICS OF PLASMAS, 2024, 31 (05)
  • [25] Implosion configurations for robust ignition using high-density carbon (diamond) ablator for indirect-drive ICF at the National Ignition Facility
    Ho, D. D. -M.
    Haan, S. W.
    Salmonson, J. D.
    Clark, D. S.
    Lindl, J. D.
    Milovich, J. L.
    Thomas, C. A.
    Hopkins, L. F. Berzak
    Meezan, N. B.
    9TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA 2015), 2016, 717
  • [26] Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility using a Four-Shock Adiabat Shaped Drive
    Casey, D. T.
    Milovich, J. L.
    Smalyuk, V. A.
    Clark, D. S.
    Robey, H. F.
    Pak, A.
    MacPhee, A. G.
    Baker, K. L.
    Weber, C. R.
    Ma, T.
    Park, H-S.
    Doeppner, T.
    Callahan, D. A.
    Haan, S. W.
    Patel, P. K.
    Peterson, J. L.
    Hoover, D.
    Nikroo, A.
    Yeamans, C. B.
    Merrill, F. E.
    Volegov, P. L.
    Fittinghoff, D. N.
    Grim, G. P.
    Edwards, M. J.
    Landen, O. L.
    Lafortune, K. N.
    MacGowan, B. J.
    Widmayer, C. C.
    Sayre, D. B.
    Hatarik, R.
    Bond, E. J.
    Nagel, S. R.
    Benedetti, L. R.
    Izumi, N.
    Khan, S.
    Bachmann, B.
    Spears, B. K.
    Cerjan, C. J.
    Johnson, M. Gatu
    Frenje, J. A.
    PHYSICAL REVIEW LETTERS, 2015, 115 (10)
  • [27] Polyimide capsules may hold high pressure DT fuel without cryogenic support for the National Ignition Facility indirect-drive targets
    Sanchez, JJ
    Letts, SA
    FUSION TECHNOLOGY, 1997, 31 (04): : 491 - 496