Investigation of the steam reforming of a series of model compounds derived from bio-oil for hydrogen production

被引:157
|
作者
Hu, Xun [1 ,2 ]
Lu, Gongxuan [1 ]
机构
[1] Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Oxo Synth & Select Oxidat, Lanzhou 730000, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
关键词
Steam reforming; Hydrogen; Bio-oil; Coke formation; ACETIC-ACID; BIOMASS GASIFICATION; METHANE-STEAM; NI CATALYST; ETHANOL; CO; DISSOCIATION; SPINEL; WATER; TAR;
D O I
10.1016/j.apcatb.2008.10.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, steam reforming of acetic acid, ethylene glycol, acetone, ethyl acetate, m-xylene, and glucose, which were representative of the main components in bio-oil, were performed to investigate the feasibility of these feedstocks for hydrogen production. The effects of reaction temperature and steam to carbon ratios (S/C) on steam reforming as well as coke formation tendency of the bio-oil components in the presence and absence of steam were investigated in a detailed manner. Low reaction temperature and S/C led to low steam reforming efficiency, and consequently decomposition or degradation of the feedstocks dominated, resulting in large amounts of by-products. Increasing reaction temperature and S/C increased the steam reforming rates and the partial pressure of steam on catalyst surface, favoring conversion of the feedstocks and removal of the by-products. Coke formation rates of the feedstocks during the long-term experiments decreased in the following orders: glucose >> m-xylene > acetone > ethyl acetate > ethylene glycol > acetic acid. Decomposition or polymerization of the feedstocks to carbonaceous deposit was the main route for coke formation in glucose, m-xylene, and acetone reforming, while the large amounts of by-products such as ethylene, CO, or acetone were main sources of coke in the steam reforming of ethyl acetate, ethylene glycol, and acetic acid. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:376 / 385
页数:10
相关论文
共 50 条
  • [21] Investigation on hydrogen production by catalytic steam reforming of maize stalk fast pyrolysis bio-oil
    Fu, Peng
    Yi, Weiming
    Li, Zhihe
    Bai, Xueyuan
    Zhang, Andong
    Li, Yanmei
    Li, Zou
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (26) : 13962 - 13971
  • [22] Steam reforming of bio-oil from rice husks fast pyrolysis for hydrogen production
    Chen, Tianju
    Wu, Ceng
    Liu, Ronghou
    BIORESOURCE TECHNOLOGY, 2011, 102 (19) : 9236 - 9240
  • [23] Catalytic steam reforming of bio-oil model compounds for hydrogen production over coal ash supported Ni catalyst
    Wang, Shurong
    Zhang, Fan
    Cai, Qinjie
    Li, Xinbao
    Zhu, Lingjun
    Wang, Qi
    Luo, Zhongyang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (05) : 2018 - 2025
  • [24] Sustainable hydrogen from bio-oil - Steam reforming of acetic acid as a model oxygenate
    Takanabe, K
    Aika, K
    Seshan, K
    Lefferts, L
    JOURNAL OF CATALYSIS, 2004, 227 (01) : 101 - 108
  • [25] Sustainable hydrogen from bio-oil steam reforming of acetic acid as a model oxygenate
    Lan, Ping
    Xu, Qingli
    Lan, Lihong
    Zhang, Suping
    Yan, Yongjie
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2010, 31 (05): : 550 - 555
  • [26] Catalytic steam reforming of bio-oil model compounds for hydrogen-rich gas production using bio-char as catalyst
    Ma, Zhong
    Xiao, Rui
    Zhang, Huiyan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (06) : 3579 - 3585
  • [27] Hydrogen production from catalytic steam reforming of biomass pyrolysis oil or bio-oil derivatives: A review
    Setiabudi, H. D.
    Aziz, M. A. A.
    Abdullah, Sureena
    Teh, L. P.
    Jusoh, R.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (36) : 18376 - 18397
  • [28] The production of hydrogen through steam reforming of bio-oil model compounds recovering waste heat from blast furnace slagThermodynamic study
    Xin Yao
    Qingbo Yu
    Huaqing Xie
    Wenjun Duan
    Zhengri Han
    Sihong Liu
    Qin Qin
    Journal of Thermal Analysis and Calorimetry, 2018, 131 : 2951 - 2962
  • [29] Maximum Hydrogen Production by Autothermal Steam Reforming of Bio-oil With NiCuZnAl Catalyst
    Yan, Shi-zhi
    Zhai, Qi
    Li, Quan-xin
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2012, 25 (03) : 365 - 372
  • [30] Sustainable hydrogen production from steam reforming of bio-oil model compound based on carbon deposition/elimination
    Wu, Ceng
    Liu, Ronghou
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (04) : 2860 - 2868