We describe a project to trial and develop enhanced surveillance technologies for public safety. A key technology is robust recognition of faces from low-resolution CCTV footage where there may be as few as 12 pixels between the eyes. Current commercial face recognition systems require 60-90 pixels between the eyes as well as tightly controlled image capture conditions. Our group has thus concentrated on fundamental face recognition issues such as robustness to low resolution and image capture conditions as required for uncontrolled CCTV surveillance. In this paper, we propose a fast multi-class pattern classification approach to enhance PCA and FLD methods for 2D face recognition under changes in pose, illumination, and expression. The method first finds the optimal weights of features pairwise and constructs a feature chain in order to determine the weights for all features. Computational load of the proposed approach is extremely low by design, in order to facilitate usage in automated surveillance. The method is evaluated on PIE, FERET, and Asian Face databases, with the results showing that the method performs remarkably well compared to several benchmark appearance-based methods. Moreover, the method can reliably recognise faces with large pose angles from just one gallery image.