Strengthening mechanisms in heat-resistant martensitic 9Cr steels

被引:12
|
作者
Iwanaga, K
Tsuchiyama, T
Takaki, S
机构
[1] Kyushu Univ, Dept Mat Phys & Chem, Higashi Ku, Fukuoka 8128581, Japan
[2] Kyushu Univ, Grad Sch Engn, Fukuoka 812, Japan
关键词
heat-resistant steel; martensite; creep strength; carbide forming element; solid solution strengthening; carbide particle; recovery;
D O I
10.4028/www.scientific.net/KEM.171-174.477
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Strengthening mechanisms of heat-resistant martensitic steels were discussed in terms of microstructural evolution and changes in hardness during creep deformation. In carbon-free 9%Cr steels, it was confirmed that the Mo or W addition improves creep properties of martensite through the solid solution strengthening. On the other hand, creep tests of low-carbon 9%Cr steels revealed the fact that carbide particles precipitated along lath boundaries markedly contribute to the retardation of the recovery of martensite, and this leads to an excellent creep properties. The addition of Mo or W to the low-carbon steels does not give a large effect to the retardation of recovery, but causes a large solid solution strengthening in the materials with the subgrain structure, which has been formed in the latter stage of creep deformation.
引用
收藏
页码:477 / 482
页数:6
相关论文
共 50 条
  • [31] Effect of Tempering Temperature on the Aqueous Corrosion Resistance of 9Cr Series Heat-Resistant Steel
    Li, Hui
    Bai, Hao
    MATERIALS, 2024, 17 (20)
  • [32] Strengthening mechanism of Cu bearing heat resistant martensitic steels
    Futamura, Yuichi
    Tsuchiyama, Toshihiro
    Takaki, Setsuo
    ISIJ International, 2001, 41 (SUPPL.)
  • [33] Advanced heat-resistant martensitic steels: Long-term creep deformation and fracture mechanisms
    Fedoseeva, A.
    Tkachev, E.
    Kaibyshev, R.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 862
  • [34] Strengthening mechanism of Cu bearing heat resistant martensitic steels
    Futamura, Y
    Tsuchiyama, T
    Takaki, S
    ISIJ INTERNATIONAL, 2001, 41 : S106 - S110
  • [35] Effect of tempering on microstructure and tensile properties of niobium modified martensitic 9Cr heat resistant steel
    Mandal, A.
    Bandyopadhay, T. K.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 620 : 463 - 470
  • [36] Positron annihilation studies on 9Cr reduced activation ferritic/martensitic steels
    Ragunanthan, V.
    Babu, S. Hari
    Chirayath, Varghese Anto
    Rajaraman, R.
    Amarendra, G.
    Saroja, S.
    Sundar, C. S.
    Alamo, Ana
    Raj, Baldev
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 6, NO 11, 2009, 6 (11): : 2307 - +
  • [37] THE EFFECT OF TUNGSTEN ON CREEP-BEHAVIOR OF TEMPERED MARTENSITIC 9CR STEELS
    ABE, F
    NAKAZAWA, S
    METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1992, 23 (11): : 3025 - 3034
  • [38] Microstructure control for high strength 9Cr ferritic-martensitic steels
    Tan, L.
    Hoelzer, D. T.
    Busby, J. T.
    Sokolov, M. A.
    Klueh, R. L.
    JOURNAL OF NUCLEAR MATERIALS, 2012, 422 (1-3) : 45 - 50
  • [39] TTP diagrams of Z phase in 9-12% Cr heat-resistant steels
    Sawada, Kota
    Kushima, Hideaki
    Kimura, Kazuhiro
    Tabuchi, Masaaki
    ISIJ INTERNATIONAL, 2007, 47 (05) : 733 - 739
  • [40] Quench Brittleness of 12%Cr Martensitic Heat-Resistant Steel
    Yang Gang
    Liu Zheng-dong
    Cheng Shi-chang
    Yang Muxin
    ENGINEERING MATERIALS V, 2011, 479 : 8 - 12