Machine learning approaches to predict thermal demands using skin temperatures: Steady-state conditions

被引:135
|
作者
Dai, Changzhi [1 ,2 ]
Zhang, Hui [2 ]
Arens, Edward [2 ]
Lian, Zhiwei [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Dept Architecture, Shanghai 200030, Peoples R China
[2] Univ Calif Berkeley, Ctr Built Environm, Berkeley, CA USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Thermal environment; Skin temperature; Support vector machine; Intelligent control; BODY; SENSATION; MODEL;
D O I
10.1016/j.buildenv.2016.12.005
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Inefficient controlling strategies in heating and cooling systems have given rise to a large amount of energy waste and to widespread complaints about the thermal environment in buildings. An intelligent control method based on a support vector machine (SVM) classifier is proposed in this paper. Skin temperatures are the only inputs to the model and have shown attractive prediction power in recognizing steady state thermal demands. Data were accumulated from two studies to consider potential use for either individuals or a group of occupants. Using a single skin temperature correctly predicts 80% of thermal demands. Using combined skin temperatures from different body segments can improve the model to over 90% accuracy. Results show that three skin locations contained enough information for classification and more would cause the curse of dimensionality. Models using different skin temperatures were compared. Optimal parameters for each model were provided using grid search technique. Considering the overfitting possibility and the cases without learning processes, SVM classifiers with a linear kernel are preferred over Gaussian kernel ones. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [31] Erratum: Langerhans cells renew in the skin throughout life under steady-state conditions
    Miriam Merad
    Markus G. Manz
    Holger Karsunky
    Amy Wagers
    Wendy Peters
    Israel Charo
    Irving L. Weissman
    Jason G. Cyster
    Edgar G. Engleman
    Nature Immunology, 2003, 4 : 92 - 92
  • [32] A Study of Steady-State Thermal Distribution on Circular Plate Using ANSYS
    Jikol, F.
    Akop, M. Z.
    Arifin, Y. M.
    Salim, M. A.
    Herawan, S. G.
    INTERNATIONAL JOURNAL OF NANOELECTRONICS AND MATERIALS, 2021, 14 : 479 - 488
  • [33] Thermal Network Calibration Using Short-Transient and Steady-State Thermal Tests
    Armando, Eric
    Boglietti, Aldo
    Carpaneto, Enrico
    Nair, Devi Geetha
    2019 IEEE INTERNATIONAL ELECTRIC MACHINES & DRIVES CONFERENCE (IEMDC), 2019, : 2021 - 2026
  • [34] Steady-state Thermal Analysis of 5 kW IPMSM Using Thermal Equivalent Circuit
    Kim, Tae Hyun
    Yoo, Young Bum
    Na, Jong Seung
    Ryu, Kyongtae
    Moon, Yoon Jae
    Lee, Jae Heon
    Lee, Ju
    Park, Chan Bae
    Moon, Seung Jae
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2014, 38 (11) : 951 - 956
  • [35] PASSIVE OR ACTIVE INSPIRED GAS HUMIDIFICATION INCREASES THERMAL STEADY-STATE TEMPERATURES IN ANESTHETIZED INFANTS
    BISSONNETTE, B
    SESSLER, DI
    ANESTHESIA AND ANALGESIA, 1989, 69 (06): : 783 - 787
  • [36] Machine learning algorithms to predict core, skin, and hair-coat temperatures of piglets
    Gorczyca, Michael T.
    Milan, Hugo Fernando Maia
    Campos Maia, Alex Sandro
    Gebremedhin, Kifle G.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 151 : 286 - 294
  • [37] Determination of Squirrel Cage Induction Machine Parameters Including Skin Effect in Steady-State Operation
    Touhami, O.
    Mehenoun, M.
    Mahmoudi, M. O.
    Benakba, N.
    2008 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1-5, 2008, : 2072 - 2077
  • [38] Machine Learning Enabled Steady-State Security Predictor as Deployed for Distribution Feeder Reconfiguration
    Dipu Sarkar
    Sravan Kumar Gunturi
    Journal of Electrical Engineering & Technology, 2021, 16 : 1197 - 1206
  • [39] Optimal Steady-State Voltage Control Using Gaussian Process Learning
    Pareek, Parikshit
    Yu, Weng
    Nguyen, Hung Dinh
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (10) : 7017 - 7027
  • [40] A predictive model for steady-state multiphase pipe flow: Machine learning on lab data
    Kanin, E. A.
    Osiptsov, A. A.
    Vainshtein, A. L.
    Burnaev, E., V
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 180 : 727 - 746