A Comparative Study of Existing Machine Learning Approaches for Parkinson's Disease Detection

被引:37
|
作者
Pahuja, Gunjan [1 ]
Nagabhushan, T. N. [2 ]
机构
[1] Dr APJ Abdul Kalam Tech Univ, JSSATEN, Dept Comp Sci & Engn, Noida, UP, India
[2] SJCE, Dept Informat Sci & Engn, Mysuru, India
关键词
Artificial neural networks (ANN); K-nearest neighbors (KNN); Parkinson' s disease (PD); Support vector machine (SVM); MOVEMENT-DISORDERS; PREDICTION; CLASSIFIER; MODEL;
D O I
10.1080/03772063.2018.1531730
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Parkinson's disease (PD) has affected millions of people worldwide and is more prevalent in people, over the age of 50. Even today, with many technologies and advancements, early detection of this disease remains a challenge. This necessitates a need for the machine learning-based automatic approaches that help clinicians to detect this disease accurately in its early stage. Thus, the focus of this research paper is to provide an insightful survey and compare the existing computational intelligence techniques used for PD detection. To save time and increase treatment efficiency, classification has found its place in PD detection. The existing knowledge review indicates that many classification algorithms have been used to achieve better results, but the problem is to identify the most efficient classifier for PD detection. The challenge in identifying the most appropriate classification algorithm lies in their application on local dataset. Thus, in this paper three types of classifiers, namely, Multilayer Perceptron, Support Vector Machine and K-nearest neighbor have been discussed on the benchmark (voice) dataset to compare and to know which of these classifiers is the most efficient and accurate for PD classification. The Voice input dataset for these classifiers has been obtained from UCI machine learning repository. ANN with Levenberg-Marquardt algorithm was found to be the best classifier, having highest classification accuracy (95.89%). Moreover, we compared our results with those obtained by Resul Das ["A comparison of multiple classification methods for diagnosis of Parkinson Disease," Expert Systems and applications, vol. 37, pp 1568-1572, 2010].
引用
收藏
页码:4 / 14
页数:11
相关论文
共 50 条
  • [21] A comparative study: prediction of parkinson's disease using machine learning, deep learning and nature inspired algorithm
    Keserwani, Pankaj Kumar
    Das, Suman
    Sarkar, Nairita
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (27) : 69393 - 69441
  • [22] Parkinson's Disease Classification through Gait Analysis: Comparative study of deep learning and machine learning algorithms
    Al-Hammadi, Mustafa
    Fazlali, Masoumeh
    Fleyeh, Hasan
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,
  • [23] A Robust Machine Learning Approach Towards Detection of Parkinson's Disease
    Susmitha, A. R.
    Das, Saneev Kumar
    PROCEEDINGS OF SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTER ENGINEERING AND COMMUNICATION SYSTEMS, ICACECS 2021, 2022, : 307 - 316
  • [24] Alzheimer's Disease Detection: A Comparative Study of Machine Learning Models and Multilayer Perceptron
    Jha, Shambhu Kumar
    Vats, Shambhavi
    Kaushik, Rajni Sehgal
    APPLIED COMPUTER SYSTEMS, 2024, 29 (01) : 91 - 97
  • [25] Diagnosing Parkinson's Disease Based on Voice Recordings: Comparative Study Using Machine Learning Techniques
    Abdelhakeem, Sara Khaled
    Mustafa, Zeeshan Mohammed
    Kadhem, Hasan
    ADVANCED INTELLIGENT VIRTUAL REALITY TECHNOLOGIES, AIVR 2022, 2023, 330 : 49 - 60
  • [26] Machine Learning Approaches for the Neuroimaging Study of Alzheimer's Disease
    Ye, Jieping
    Wu, Teresa
    Li, Jing
    Chen, Kewei
    COMPUTER, 2011, 44 (04) : 99 - 101
  • [27] Using machine learning approaches to perform defect detection of existing bridges
    Ruggieri, Sergio
    Cardellicchio, Angelo
    Nettis, Andrea
    Reno, Vito
    Uva, Giuseppina
    XIX ANIDIS CONFERENCE, SEISMIC ENGINEERING IN ITALY, 2023, 44 : 2028 - 2035
  • [28] Mining genetic and transcriptomic data using machine learning approaches in Parkinson’s disease
    Chang Su
    Jie Tong
    Fei Wang
    npj Parkinson's Disease, 6
  • [29] Mining genetic and transcriptomic data using machine learning approaches in Parkinson's disease
    Su, Chang
    Tong, Jie
    Wang, Fei
    NPJ PARKINSONS DISEASE, 2020, 6 (01)
  • [30] Machine learning approaches to identify Parkinson's disease using voice signal features
    Alshammri, Raya
    Alharbi, Ghaida
    Alharbi, Ebtisam
    Almubark, Ibrahim
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2023, 6