Refractive index and dispersion of fluorides and oxides

被引:192
|
作者
Shannon, RD
Shannon, RC
Medenbach, O
Fischer, RX
机构
[1] Univ Bremen, Fachbereich Geowissensch, D-28359 Bremen, Germany
[2] Ruhr Univ Bochum, Fak Geowissensch, Inst Mineral, D-44780 Bochum, Germany
[3] Univ Colorado, Geol Sci CIRES, Boulder, CO 80309 USA
关键词
ellipsometry; infrared reflectivity; interband optical transitions; interference method; optical dispersion; oscillator strength; prism method; refractive index; Sellmeier equation; single oscillator energy gap;
D O I
10.1063/1.1497384
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The refractive indices of 509 oxides and 55 fluorides were analyzed using two forms of a one-term Sellmeier equation: (1) 1/(n(2)-1) = -A/lambda(2)+B, where A, the slope of the plot of (n(2)-1)(-1) versus lambda(-2) in units of 10(-16) m(2), gives a measure of dispersion and B, the intercept of the plot at lambda=infinity, gives n(infinity)=(1+1/B)(1/2) and (2) n(2)-1=EdEo/(E-o(2)-((h) over bar omega)(2)), where (h) over bar omega the photon energy, E-o = the average single oscillator (Sellmeier) energy gap, and E-d=the average oscillator strength, which measures the strength of interband optical transitions. Form (1) was used to calculate n at lambda=589.3 nm (n(D)) and n at lambda=infinity (n(infinityproportional to)), and the dispersion constant A. The total mean polarizabilility for each compound was calculated using the Lorenz-Lorentz equation: alpha(e)=3/4pi [(V-m)(n(infinity)(2-)1)/(n(infinity)(2)+2)], where V-m is the molar volume in Angstrom(3). Provided for each compound are: n(D), n(infinity), V-m, <alpha(e)>, <A>, <B>, <E-d>, <E-o>, the literature reference, the method of measurement of n and estimated errors in n. Results obtained by prism, infrared reflectivity, ellipsometry, and interference methods are compared. Consistency of dispersion values among like compounds and structural families is used to evaluate the accuracy of refractive index data. Dispersion values range from 40 to 260x10(-16) m(2) with the majority of values in the range of 60-100x10(-16) m(2). High dispersion is associated with s(2), p(6), d(10), and transition metal ions, H2O, and crystalline hydrates, whereas normal dispersion values are found in borates, aluminates, gallates, silicates, germanates, phosphates, and sulfates not containing H2O or any of the above ions. Exceptionally high dispersion is observed in liquid H2O, Fe2O3,Y3Fe5O12, FeOOH, Fe-2(SO4)(3),UO2,Cu2O, V2O5, MgCrO4.7H(2)O, and Cs2Mg(CrO4)(2).6H(2)O. (C) 2002 American Institute of Physics.
引用
收藏
页码:931 / 970
页数:40
相关论文
共 50 条
  • [21] REFRACTIVE INDEX AND DISPERSION OF EUROPIUM-CHALCOGENIDES
    WACHTER, P
    PHYSIK DER KONDENSITERTEN MATERIE, 1968, 8 (01): : 80 - +
  • [22] Refractive index and dispersion of normal and heavy water
    Tilton, LW
    Taylor, JK
    BUREAU OF STANDARDS JOURNAL OF RESEARCH, 1934, 13 (02): : 207 - 209
  • [23] Effective spectral dispersion of refractive index modulation
    Vojtisek, Petr
    Kveton, Milan
    Richter, Ivan
    JOURNAL OF OPTICS, 2017, 19 (04)
  • [24] Study on refractive index dispersion of organic polymer
    Shi, Wei
    Fang, Changshui
    Yin, Xin
    Pan, Qiwei
    Sun, Xun
    Gu, Qingtian
    Qin, Zikai
    Yadian Yu Shengguang/Piezoelectrics and Acoustooptics, 2000, 22 (01): : 43 - 45
  • [25] MINIMAL DISPERSION REFRACTIVE-INDEX PROFILES
    FEIT, MD
    APPLIED OPTICS, 1979, 18 (17): : 2927 - 2929
  • [26] Refractive index dispersion law of silica aerogel
    Bellunato, T.
    Calvi, M.
    Matteuzzi, C.
    Musy, M.
    Perego, D. L.
    Storaci, B.
    EUROPEAN PHYSICAL JOURNAL C, 2007, 52 (03): : 759 - 764
  • [27] REFRACTIVE INDEX AND DISPERSION OF BETA SILICON CARBIDE
    SHAFFER, PTB
    NAUM, RG
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1969, 59 (11) : 1498 - &
  • [28] Dispersion of refractive index in degenerate mercury cadmium telluride
    Jaksic, Z
    Jaksic, O
    1997 21ST INTERNATIONAL CONFERENCE ON MICROELECTRONICS - PROCEEDINGS, VOLS 1 AND 2, 1997, : 95 - 98
  • [29] Dispersion in optical fibers with complex refractive index profile
    Belanov, AS
    Dianov, EM
    Krivenkov, VI
    DOKLADY AKADEMII NAUK, 1999, 364 (01) : 37 - 41
  • [30] Measurement of the refractive index dispersion around an absorbing line
    Marchetti, S
    Simili, R
    OPTICS COMMUNICATIONS, 2005, 249 (1-3) : 37 - 41