Chemical Changes in Liquid Benzene Multiply Shock Compressed to 25 GPa

被引:38
|
作者
Root, S.
Gupta, Y. M.
机构
[1] Washington State Univ, Inst Shock Phys, Pullman, WA 99164 USA
[2] Washington State Univ, Dept Phys, Pullman, WA 99164 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2009年 / 113卷 / 07期
关键词
TRANSIENT HIGH-PRESSURE; EQUATION-OF-STATE; RAMAN-SPECTROSCOPY; HEAT-CAPACITY; SMALL-VOLUME; X-RAY; HYDROCARBONS; NITROMETHANE; DIMERIZATION; POLYBUTENE;
D O I
10.1021/jp809099w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Shock wave experiments utilizing stepwise-loading, with peak stresses ranging between 4 and 25 GPa, were performed to examine the dynamic high pressure response of liquid benzene at thermodynamic conditions not attainable in single shock experiments. Time-resolved Raman spectroscopy was used to monitor the molecular and chemical changes on sub-mu s time scales. Up to 20 GPa, the Raman modes showed pressure-induced shifting and broadening but no indication of a chemical change. At 24.5 GPa, however, the Raman modes become indistinguishable from an increasing background within 40 ns after the sample attained peak pressure, indicating a chemical change. A thermodynamically consistent equation of state (EOS) was developed to calculate the relevant thermodynamic variables in multiply shock compressed liquid benzene. Idealized molecular configurations were used in combination with the thermodynamic quantities in the shocked state to calculate the intermolecular separation between benzene molecules and to ascertain the likelihood of pi-orbital overlap. These idealized calculations show that sufficient energy and pi-orbital overlap exist in multiply shock compressed liquid benzene to permit intermolecular bonding at 24.5 GPa. Analysis of the Raman spectra, using the thermodynamic and intermolecular separation calculations, suggests that benzene undergoes polymerization through cycloaddition reactions. The rapid rate of polymerization is attributed to the benzene remaining in a liquid state on the sub-mu s experimental time scale. The results from the present work demonstrate the importance of time, pressure, temperature, and phase in chemical changes associated with pi-bonded molecules.
引用
收藏
页码:1268 / 1277
页数:10
相关论文
共 50 条
  • [11] Multimessenger measurements of the static structure of shock-compressed liquid silicon at 100 GPa
    Poole, H.
    Ginnane, M. K.
    Millot, M.
    Bellenbaum, H. M.
    Collins, G. W.
    Hu, S. X.
    Polsin, D.
    Saha, R.
    Topp-Mugglestone, J.
    White, T. G.
    Chapman, D. A.
    Rygg, J. R.
    Regan, S. P.
    Gregori, G.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [12] COHERENT ANTI-STOKES RAMAN-SCATTERING IN BENZENE AND NITROMETHANE SHOCK-COMPRESSED TO 10 GPA
    SCHMIDT, SC
    MOORE, DS
    SHANER, JW
    SHAMPINE, DL
    HOLT, WT
    PHYSICA B & C, 1986, 139 (1-3): : 587 - 589
  • [13] Evidence for Dissociation and Ionization in Shock Compressed Nitrogen to 800 GPa
    Kim, Yong-Jae
    Militzer, Burkhard
    Boates, Brian
    Bonev, Stanimir
    Celliers, Peter M.
    Collins, Gilbert W.
    Driver, Kevin P.
    Fratanduono, Dayne E.
    Hamel, Sebastien
    Jeanloz, Raymond
    Rygg, J. Ryan
    Swift, Damian C.
    Eggert, Jon H.
    Millot, Marius
    PHYSICAL REVIEW LETTERS, 2022, 129 (01)
  • [14] Sound speed determination in copper shock compressed to 190 GPa
    Hawreliak, J. A.
    Winey, J. M.
    Toyoda, Y.
    Zimmerman, K.
    Gupta, Y. M.
    JOURNAL OF APPLIED PHYSICS, 2024, 136 (16)
  • [15] Evidence of shock-compressed stishovite above 300 GPa
    Markus O. Schoelmerich
    Thomas Tschentscher
    Shrikant Bhat
    Cindy A. Bolme
    Eric Cunningham
    Robert Farla
    Eric Galtier
    Arianna E. Gleason
    Marion Harmand
    Yuichi Inubushi
    Kento Katagiri
    Kohei Miyanishi
    Bob Nagler
    Norimasa Ozaki
    Thomas R. Preston
    Ronald Redmer
    Ray F. Smith
    Tsubasa Tobase
    Tadashi Togashi
    Sally J. Tracy
    Yuhei Umeda
    Lennart Wollenweber
    Toshinori Yabuuchi
    Ulf Zastrau
    Karen Appel
    Scientific Reports, 10
  • [16] Molecular response of liquid nitrogen multiply shocked to 40 GPa
    Lacina, D.
    Gupta, Y. M.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (08):
  • [17] Structural Transformation and Melting in Gold Shock Compressed to 355 GPa
    Sharma, Surinder M.
    Turneaure, Stefan J.
    Winey, J. M.
    Li, Yuelin
    Rigg, Paulo
    Schuman, Adam
    Sinclair, Nicholas
    Toyoda, Y.
    Wang, Xiaoming
    Weir, Nicholas
    Zhang, Jun
    Gupta, Y. M.
    PHYSICAL REVIEW LETTERS, 2019, 123 (04)
  • [18] Anomaly in the conductivity of shock-compressed nickel at a pressure of ∼23 GPa
    V. V. Komissarov
    M. N. Pavlovskii
    Physics of the Solid State, 1999, 41 : 331 - 333
  • [19] Evidence of shock-compressed stishovite above 300GPa
    Schoelmerich, Markus O.
    Tschentscher, Thomas
    Bhat, Shrikant
    Bolme, Cindy A.
    Cunningham, Eric
    Farla, Robert
    Galtier, Eric
    Gleason, Arianna E.
    Harmand, Marion
    Inubushi, Yuichi
    Katagiri, Kento
    Miyanishi, Kohei
    Nagler, Bob
    Ozaki, Norimasa
    Preston, Thomas R.
    Redmer, Ronald
    Smith, Ray F.
    Tobase, Tsubasa
    Togashi, Tadashi
    Tracy, Sally J.
    Umeda, Yuhei
    Wollenweber, Lennart
    Yabuuchi, Toshinori
    Zastrau, Ulf
    Appel, Karen
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [20] Optical properties of shock-compressed diamond up to 550 GPa
    Katagiri, Kento
    Ozaki, Norimasa
    Miyanishi, Kohei
    Kamimura, Nobuki
    Umeda, Yuhei
    Sano, Takayoshi
    Sekine, Toshimori
    Kodama, Ryosuke
    PHYSICAL REVIEW B, 2020, 101 (18)