Carbon-coated titanium dioxide micro-bowls as an anode material for Li-ion batteries

被引:12
|
作者
Tang, Sha Sha [1 ]
Li, Gao Ran [1 ]
Liu, Bin Hong [2 ]
Li, Zhou Peng [1 ]
机构
[1] Zhejiang Univ, Dept Chem & Biol Engn, Hangzhou, Zhejiang, Peoples R China
[2] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-ion battery; Anode material; Micro-sized titanium dioxide bowl; Carbon coating; Electrochemical performance; ANATASE TIO2; HYDROGEN GENERATION; LITHIUM INSERTION; PARTICLE-SIZE; PERFORMANCE; HYDROLYSIS; COMPOSITE; NANOSTRUCTURES; CAPABILITY; NANOTUBES;
D O I
10.1016/j.electacta.2014.01.097
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A series of micro-sized TiO2 materials with different morphologies were synthesized via pyrolysis of spray-dried precursors, which were obtained via tetrabutyl titanate (TBT) hydrolysis reaction. The pH value of the precursor sol and its T,BT content significantly influenced the morphology of the synthesized TiO2 materials but showed little effect on the improvement of lithiation-delithiation capacity. The carbon coating effect on the electrochemical performance improvement depended on the morphology of the synthesized TiO2 particles. Carbon-coated TiO2 bowls with a large thickness (1.18 mu m) provide an initial Li+ insertion capacity of 310 mAh g(-1) at a cut-off voltage of 1V vs. Li+/Li, which is much higher than the carbon-coated TiO2 bowls with a small thickness (0.62 mu m, capacity: 22 mAh g(-1)). Carbon-coated TiO2 bowls with a small thickness can be activated via lithiation-delithiation cycling between 0 and 3 V. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:199 / 205
页数:7
相关论文
共 50 条
  • [1] Investigation on pyrolitic carbon-coated microcrystalline graphite as anode material for Li-ion batteries
    He, Yue-De
    Liu, Hong-Bo
    Hong, Quan
    Xiao, Hai-He
    Gongneng Cailiao/Journal of Functional Materials, 2013, 44 (16): : 2397 - 2400
  • [2] Carbon-Coated SiO2 Composites as Promising Anode Material for Li-Ion Batteries
    Buga, Mihaela-Ramona
    Spinu-Zaulet, Adnana Alina
    Ungureanu, Cosmin Giorgian
    Mitran, Raul-Augustin
    Vasile, Eugeniu
    Florea, Mihaela
    Neatu, Florentina
    MOLECULES, 2021, 26 (15):
  • [3] Carbon-coated nanophase CaMoO4 as anode material for Li ion batteries
    Sharma, N
    Shaju, KM
    Rao, GVS
    Chowdari, BVR
    Dong, ZL
    White, TJ
    CHEMISTRY OF MATERIALS, 2004, 16 (03) : 504 - 512
  • [4] Investigation on In Situ Carbon-Coated ZnFe2O4 as Advanced Anode Material for Li-Ion Batteries
    Alam, Mir Waqas
    BaQais, Amal
    Rahman, Mohammed M.
    Aamir, Muhammad
    Abuzir, Alaaedeen
    Mushtaq, Shehla
    Amin, Muhammad Nasir
    Khan, Muhammad Shuaib
    GELS, 2022, 8 (05)
  • [5] Preparation and Characterization of Carbon Coated Silicon Nanoparticle as Anode Material for Li-ion Batteries
    T Zhang LJ Fu J Gao Y P Wu HQ Wu Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai China
    复旦学报(自然科学版), 2005, (05) : 293 - 294
  • [6] Graphene/Carbon-Coated Si Nanoparticle Hybrids as High-Performance Anode Materials for Li-Ion Batteries
    Zhou, Min
    Cai, Tingwei
    Pu, Fan
    Chen, Hao
    Wang, Zhao
    Zhang, Haiyong
    Guan, Shiyou
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (08) : 3449 - 3455
  • [7] Silicon as anode material for Li-ion batteries
    Ozanam, Francois
    Rosso, Michel
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2016, 213 : 2 - 11
  • [8] Enhanced cyclability of amorphous carbon-coated SnO2-graphene composite as anode for Li-ion batteries
    Lu, Xiaoxiao
    Yang, Fan
    Geng, Xin
    Xiao, Ping
    ELECTROCHIMICA ACTA, 2014, 147 : 596 - 602
  • [9] Carbon-coated hierarchically porous silicon as anode material for lithium ion batteries
    Shen, Lanyao
    Wang, Zhaoxiang
    Chen, Liquan
    RSC ADVANCES, 2014, 4 (29) : 15314 - 15318
  • [10] Rational design of carbon-coated hollow MnO nanotubes for Li-ion batteries
    Zhang, Shuzhen
    He, Wen
    Zhang, Xudong
    Yang, Xuena
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2015, 26 (04) : 2189 - 2197