The ALE/Lagrangian Particle Finite Element Method:: A new approach to computation of free-surface flows and fluid-object interactions

被引:70
|
作者
Del Pin, Facundo
Idelsohn, Sergio
Onate, Eugenio
Aubry, Romain
机构
[1] Univ Politecn Catahuna, CIMNE, Barcelona 08034, Spain
[2] Univ Nacl Litoral, CIMEC, RA-3000 Santa Fe, Argentina
关键词
D O I
10.1016/j.compfluid.2005.06.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Particle Finite Element Method (PFEM) is a well established numerical method [Aubry R, Idelsohn SR, Ohate E, Particle finite element method in fluid mechanics including thermal convection-diffusion, Comput Struct 83 (2004) 1459-75; Idelsohn S, Onate E, Del Pin F, A Lagrangian meshless finite element method applied to fluid-structure interaction problems, Comput Struct 81 (2003) 655-71; Idelsohn SR, Ofiate E, Del Pin F, The particle finite element method a powerful tool to solve incompressible flows with free-surfaces and breaking waves, Int J Num Methods Eng 61 (2004) 964-84] where critical parts of the continuum are discretized into particles. The nodes treated as particles transport their momentum and physical properties in a Lagrangian way while the rest of the nodes may move in an Arbitrary Lagrangian-Eulerian (ALE) frame. In order to solve the governing equations that represent the continuum, the particles are connected by means of a Delaunay Triangulation [Idelsohn SR, Ofiate E, Calvo N, Del Pin F, The meshless finite element method, Int J Numer Methods Eng 58-4 (2003)]. The resulting partition is a mesh where the Finite Element Method is applied to solve the equations of motion. The application of a fully Lagrangian formulation on the particles provides a natural and simple way to track free surfaces as well as to compute contacts in an accurate and robust fashion. Furthermore, the usage of an ALE formulation allows large mesh deformation with larger time steps than the full Lagrangian scheme. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:27 / 38
页数:12
相关论文
共 50 条
  • [21] Free-slip boundary conditions for simulating free-surface incompressible flows through the particle finite element method
    Cerquaglia, Marco Lucio
    Deliege, Geoffrey
    Boman, Romain
    Terrapon, Vincent
    Ponthot, Jean-Philippe
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 110 (10) : 921 - 946
  • [22] A HYBRID FINITE-BOUNDARY ELEMENT METHOD FOR INVISCID FLOWS WITH FREE-SURFACE
    PELEKASIS, NA
    TSAMOPOULOS, JA
    MANOLIS, GD
    JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 101 (02) : 231 - 251
  • [23] Coupling of Smoothed Particle Hydrodynamics with Finite Volume method for free-surface flows
    Marrone, S.
    Di Mascio, A.
    Le Touze, D.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 310 : 161 - 180
  • [24] LAGRANGIAN FINITE-ELEMENT ANALYSIS APPLIED TO VISCOUS FREE-SURFACE FLUID-FLOW
    RAMASWAMY, B
    KAWAHARA, M
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1987, 7 (09) : 953 - 984
  • [25] Computation of free-surface flows using the finite-volume method and moving grids
    Muzaferija, S
    Peric, M
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 1997, 32 (04) : 369 - 384
  • [26] Particle Virtual Element Method (PVEM): an agglomeration technique for mesh optimization in explicit Lagrangian free-surface fluid modelling
    Fu, Cheng
    Cremonesi, Massimiliano
    Perego, Umberto
    Hudobivnik, Blaz
    Wriggers, Peter
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 433
  • [27] A particle-position-based finite element formulation for free-surface flows with topological changes
    Avancini, Giovane
    Franci, Alessandro
    Idelsohn, Sergio
    Sanches, Rodolfo A. K.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 429
  • [28] A second-order semi-Lagrangian particle finite element method for fluid flows
    Jonathan Colom-Cobb
    Julio Garcia-Espinosa
    Borja Servan-Camas
    P. Nadukandi
    Computational Particle Mechanics, 2020, 7 : 3 - 18
  • [29] A second-order semi-Lagrangian particle finite element method for fluid flows
    Colom-Cobb, Jonathan
    Garcia-Espinosa, Julio
    Servan-Camas, Borja
    Nadukandi, P.
    COMPUTATIONAL PARTICLE MECHANICS, 2020, 7 (01) : 3 - 18
  • [30] A natural element updated Lagrangian strategy for free-surface fluid dynamics
    Gonzalez, D.
    Cueto, E.
    Chinesta, F.
    Doblare, M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 223 (01) : 127 - 150