Disorder-induced nonlinear Hall effect with time-reversal symmetry

被引:199
|
作者
Du, Z. Z. [1 ,2 ,3 ,4 ]
Wang, C. M. X. [1 ,2 ,3 ,5 ]
Li, Shuai [1 ,2 ,3 ]
Lu, Hai-Zhou [1 ,2 ,3 ,4 ,6 ]
Xie, X. C. [7 ,8 ,9 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[3] Shenzhen Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[4] Peng Cheng Lab, Shenzhen 518055, Peoples R China
[5] Shanghai Normal Univ, Dept Phys, Shanghai 200234, Peoples R China
[6] Shanghai Jiao Tong Univ, Tsung Dao Lee Inst, Shanghai 200240, Peoples R China
[7] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
[8] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[9] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1038/s41467-019-10941-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The nonlinear Hall effect has opened the door towards deeper understanding of topological states of matter. Disorder plays indispensable roles in various linear Hall effects, such as the localization in the quantized Hall effects and the extrinsic mechanisms of the anomalous, spin, and valley Hall effects. Unlike in the linear Hall effects, disorder enters the nonlinear Hall effect even in the leading order. Here, we derive the formulas of the nonlinear Hall conductivity in the presence of disorder scattering. We apply the formulas to calculate the nonlinear Hall response of the tilted 2D Dirac model, which is the symmetry-allowed minimal model for the nonlinear Hall effect and can serve as a building block in realistic band structures. More importantly, we construct the general scaling law of the nonlinear Hall effect, which may help in experiments to distinguish disorder-induced contributions to the nonlinear Hall effect in the future.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] TIME-REVERSAL SYMMETRY OF FLUCTUATIONS
    POMEAU, Y
    JOURNAL DE PHYSIQUE, 1982, 43 (06): : 859 - 867
  • [22] Time-reversal symmetry breaking?
    Borisenko, SV
    Kordyuk, AA
    Koitzsch, A
    Knupfer, M
    Fink, J
    Berger, H
    Lin, CT
    NATURE, 2004, 431 (7004) : 1 - 2
  • [23] Humean time-reversal symmetry
    Cristian López
    Michael Esfeld
    Synthese, 202
  • [24] Time-reversal symmetry breaking?
    Sergey V. Borisenko
    Alexander A. Kordyuk
    Andreas Koitzsch
    Martin Knupfer
    Jörg Fink
    Helmuth Berger
    Chengtian T. Lin
    Nature, 2004, 431 : 1 - 2
  • [25] Superconducting diode effect under time-reversal symmetry
    Liu, Fengshuo
    Itahashi, Yuki M.
    Aoki, Shunta
    Dong, Yu
    Wang, Ziqian
    Ogawa, Naoki
    Ideue, Toshiya
    Iwasa, Yoshihiro
    SCIENCE ADVANCES, 2024, 10 (31):
  • [26] Effect of time-reversal symmetry on energy bands of crystals
    Herring, C
    PHYSICAL REVIEW, 1937, 52 (04): : 0361 - 0365
  • [27] Photovoltaic Effect from the Viewpoint of Time-reversal Symmetry
    Sato, Shunsuke A.
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2019, 88 (11)
  • [28] Hall Detection of Time-Reversal Symmetry Breaking under AC Electric Driving
    Chepelianskii, A. D.
    Bouchiat, H.
    PHYSICAL REVIEW LETTERS, 2009, 102 (08)
  • [29] Superconductors with broken time-reversal symmetry: Spontaneous magnetization and quantum Hall effects
    Horovitz, B
    Golub, A
    PHYSICAL REVIEW B, 2003, 68 (21):
  • [30] Spontaneous breakdown of time-reversal symmetry induced by thermal fluctuations
    Carlstrom, Johan
    Babaev, Egor
    PHYSICAL REVIEW B, 2015, 91 (14):