Alternative splicing of G protein-coupled receptors: physiology and pathophysiology

被引:69
|
作者
Markovic, Danijela [1 ]
Challiss, R. A. John [1 ]
机构
[1] Univ Leicester, Dept Cell Physiol & Pharmacol, Leicester LE1 9HN, Leics, England
关键词
G protein-coupled receptor (GPCR); Alternative splicing; Exon; Isoform; Signalling properties; Pathophysiology; CORTICOTROPIN-RELEASING HORMONE; CHOLECYSTOKININ-B/GASTRIN RECEPTOR; METABOTROPIC GLUTAMATE RECEPTORS; VASOACTIVE-INTESTINAL-PEPTIDE; MESSENGER-RIBONUCLEIC-ACID; 7TH TRANSMEMBRANE DOMAIN; HISTAMINE H-3 RECEPTOR; FACTOR CRF RECEPTOR; GENE-EXPRESSION; FULL-LENGTH;
D O I
10.1007/s00018-009-0093-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The G protein-coupled receptors (GPCRs) are a superfamily of transmembrane receptors that have a broad distribution and can collectively recognise a diverse array of ligands. Activation or inhibition of GPCR signalling can affect many (patho)physiological processes, and consequently they are a major target for existing and emerging drug therapies. A common observation has been that the pharmacological, signalling and regulatory properties of GPCRs can differ in a cell- and tissue-specific manner. Such "phenotypic" diversity might be attributable to post-translational modifications and/or association of GPCRs with accessory proteins, however, post-transcriptional mechanisms are also likely to contribute. Although approximately 50% of GPCR genes are intronless, those that possess introns can undergo alternative splicing, generating GPCR subtype isoforms that may differ in their pharmacological, signalling and regulatory properties. In this review we shall highlight recent research into GPCR splice variation and discuss the potential consequences this might have for GPCR function in health and disease.
引用
收藏
页码:3337 / 3352
页数:16
相关论文
共 50 条
  • [21] G Protein-Coupled Receptors in Macrophages
    Lin, Hsi-Hsien
    Stacey, Martin
    MICROBIOLOGY SPECTRUM, 2016, 4 (04):
  • [22] THE STRUCTURE OF G PROTEIN-COUPLED RECEPTORS
    BALDWIN, JM
    BIOPHYSICAL JOURNAL, 1994, 66 (02) : A139 - A139
  • [23] Lysophospholipid G protein-coupled receptors
    Anliker, B
    Chun, J
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (20) : 20555 - 20558
  • [24] Trafficking of G protein-coupled receptors
    Drake, Matthew T.
    Shenoy, Sudha K.
    Lefkowitz, Robert J.
    CIRCULATION RESEARCH, 2006, 99 (06) : 570 - 582
  • [25] G Protein-Coupled Receptors in Cancer
    Bar-Shavit, Rachel
    Maoz, Myriam
    Kancharla, Arun
    Nag, Jeetendra Kumar
    Agranovich, Daniel
    Grisaru-Granovsky, Sorina
    Uziely, Beatrice
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (08)
  • [26] G protein-coupled receptors in rheumatology
    Neumann, Elena
    Khawaja, Kiran
    Mueller-Ladner, Ulf
    NATURE REVIEWS RHEUMATOLOGY, 2014, 10 (07) : 429 - 436
  • [27] Oligomerisation of G protein-coupled receptors
    Milligan, G
    Rees, S
    ANNUAL REPORTS IN MEDICINAL CHEMISTRY, VOL 35, 2000, 35 : 271 - 279
  • [28] Crystallization of G Protein-Coupled Receptors
    Salom, David
    Padayatti, Pius S.
    Palczewski, Krzysztof
    RECEPTOR-RECEPTOR INTERACTIONS, 2013, 117 : 451 - 468
  • [29] G Protein-Coupled Receptors in Osteoarthritis
    Wang, Fanhua
    Liu, Mingyao
    Wang, Ning
    Luo, Jian
    FRONTIERS IN ENDOCRINOLOGY, 2022, 12
  • [30] G Protein-Coupled Receptors (GPCRs)
    Shukla, Arun K.
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2016, 77 : 183 - 183