Spectra of interacting electrons in a quantum dot :: Quasi-exact solution

被引:0
|
作者
Koç, R [1 ]
Tütüncüler, H [1 ]
Olgar, E [1 ]
机构
[1] Gaziantep Univ, Fac Engn, Dept Phys, TR-27310 Gaziantep, Turkey
关键词
quantum dot; quasi-exactly-solvable systems;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a procedure to solve the Schrodinger equation of two interacting electrons in a quantum dot in the presence of an external magnetic field within the context of quasi-exactly-solvable spectral problems. We show that the symmetries of the Hamiltonian can be recovered for specific values of the magnetic field, which leads to an exact determination of the eigenvalues and eigenfunctions. We show that the problem possesses a hidden sl(2)-algebraic structure.
引用
收藏
页码:837 / 840
页数:4
相关论文
共 50 条
  • [41] Perturbed Coulomb Potentials in the Klein-Gordon Equation: Quasi-Exact Solution
    Baradaran, M.
    Panahi, H.
    FEW-BODY SYSTEMS, 2018, 59 (03)
  • [42] 1-D SUSY quantum system and quasi-exact solvable problems
    Zhou, Z.
    2001, Huazhong University of Science and Technology (29):
  • [43] Quasi-exact Sequences of S-Acts
    Aminizadeh, Reza
    Rasouli, Hamid
    Tehranian, Abolfazl
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 2225 - 2235
  • [44] Quasi-exact solutions of nonlinear differential equations
    Kudryashov, Nikolay A.
    Kochanov, Mark B.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) : 1793 - 1804
  • [45] Quasi-exact solvability in local field theory
    Ushveridze, A
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 466 - 470
  • [46] Quasi-exact Sequences of S-Acts
    Reza Aminizadeh
    Hamid Rasouli
    Abolfazl Tehranian
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 2225 - 2235
  • [47] Quasi-Exact Sequence and Finitely Presented Modules
    Madanshekaf, A.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2008, 3 (02): : 49 - 53
  • [48] QUASI-EXACT STATES IN THE LANCZOS RECURRENT PICTURE
    ZNOJIL, M
    PHYSICS LETTERS A, 1991, 161 (03) : 191 - 196
  • [49] Quasi-exact solvability in a general polynomial setting
    Gomez-Ullate, D.
    Kamran, N.
    Milson, R.
    INVERSE PROBLEMS, 2007, 23 (05) : 1915 - 1942
  • [50] Quasi-exact solvability in local field theory
    Ushveridze, AG
    MODERN PHYSICS LETTERS A, 1998, 13 (08) : 593 - 604