ANOTHER SHARP L2 INEQUALITY OF OSTROWSKI TYPE

被引:2
|
作者
Liu, Zheng [1 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Sci, Inst Appl Math, Anshan 114051, Liaoning, Peoples R China
来源
ANZIAM JOURNAL | 2008年 / 50卷 / 01期
关键词
sharp bound; Ostrowski type inequality; corrected Simpson rule; corrected averaged midpoint-trapezoid rule; numerical integration;
D O I
10.1017/S1446181108000308
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new sharp L-2 inequality of Ostrowski type is established, which provides some other interesting results as special cases. Applications in numerical integration are also given.
引用
收藏
页码:129 / 136
页数:8
相关论文
共 50 条
  • [21] The sharp Jackson inequality in the space L2 on the segment [−1, 1] with the power weight
    V. I. Ivanov
    D. V. Chertova
    Yongping Liu
    Proceedings of the Steklov Institute of Mathematics, 2009, 264 : 133 - 149
  • [22] A new generalization of the Ostrowski inequality and Ostrowski type inequality for double integrals on time scales
    Tuna, A.
    Kutukcu, S.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (06) : 1024 - 1039
  • [23] A general Ostrowski-type inequality
    de la Cal, J
    Cárcamo, J
    STATISTICS & PROBABILITY LETTERS, 2005, 72 (02) : 145 - 152
  • [24] The sharp affine L2 Sobolev trace inequality and affine energy in the fractional Sobolev spaces
    Van Hoang Nguyen
    ADVANCES IN APPLIED MATHEMATICS, 2020, 118
  • [25] Applications of an Ostrowski-type Inequality
    Gonska, Heiner
    Rasa, Ioan
    Rusu, Maria-Daniela
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (01) : 19 - 31
  • [26] On an Ostrowski type inequality for a random variable
    Brnetic, I
    Pecaric, J
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2000, 3 (01): : 143 - 145
  • [27] GENERALIZED FRACTIONAL OSTROWSKI TYPE INEQUALITY
    Irshad, Nazia
    Khan, Asif R.
    Musharraf, Hina
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2020, 11 (04): : 16 - 26
  • [28] ON A NEW GENERALIZATION OF OSTROWSKI TYPE INEQUALITY
    Pachpatte, B. G.
    TAMKANG JOURNAL OF MATHEMATICS, 2007, 38 (04): : 335 - 339
  • [29] A GENERALIZATION OF OSTROWSKI-TYPE INEQUALITY
    Hong, Huang
    KOREAN JOURNAL OF MATHEMATICS, 2018, 26 (04): : 665 - 674
  • [30] An L2 inequality for rational functions
    Qazi, M. A.
    Rahman, Q. I.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (07) : 657 - 668