CFD modelling of the condensation inside a supersonic ejector working with R134a

被引:7
|
作者
Biferi, Giulio [1 ]
Giacomelli, Francesco [1 ]
Mazzelli, Federico [1 ]
Milazzo, Adriano [1 ]
机构
[1] Univ Florence, Dept Ind Engn Florence, Via S Marta 3, I-50139 Florence, Italy
来源
71ST CONFERENCE OF THE ITALIAN THERMAL MACHINES ENGINEERING ASSOCIATION (ATI 2016) | 2016年 / 101卷
关键词
Supersonic ejector; CFD; non-equilibrium condensation; HEM (Homogeneous Equilibrium Model); R134a;
D O I
10.1016/j.egypro.2016.11.138
中图分类号
O414.1 [热力学];
学科分类号
摘要
The present work is about CFD modelling of condensing flow inside a supersonic ejector. The geometry used for the simulations reproduces a small-scale prototype ejector chiller built at Georgia Institute of Technology (Atlanta). The working fluid is R134a, whose expansion inside the primary nozzle and mixing chamber can lead to non-equilibrium condensation phenomena. These alter the pressure and Mach profiles along the ejector, thus generating severe thermodynamic losses. The numerical analysis of non-equilibrium condensation requires modelling of the microscopic behaviour of the fluid with a high level of fidelity. In this study, the condensation of R134a is simulated by means of two in-house developed numerical models. The first considers equilibrium conditions between the phases whereas the latter reproduces the non-equilibrium behaviour of the phase transition. Comparisons are made to understand the limitations and advantages of both approaches. (C) 2016 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:1232 / 1239
页数:8
相关论文
共 50 条
  • [21] Experimental Investigation on Ejector Performance Using R134a as Refrigerant
    Zhengshu Dai
    Bo Yu
    Pengpeng Liu
    Guangming Chen
    Hua Zhang
    Journal of Thermal Science, 2019, 28 : 727 - 735
  • [22] Turbulence modeling of a single-phase R134a supersonic ejector. Part 1: Numerical benchmark
    Croquer, S.
    Poncet, S.
    Aidoun, Z.
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2016, 61 : 140 - 152
  • [23] Experimental performances of a two-phase R134a ejector
    Ameur, K.
    Aidoun, Z.
    Ouzzane, M.
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2018, 97 : 12 - 20
  • [24] Experimental investigations on a R134a ejector applied in a refrigeration system
    Yan, Jiwei
    Chen, Guangming
    Liu, Chengyan
    Tang, Liming
    Chen, Qi
    APPLIED THERMAL ENGINEERING, 2017, 110 : 1061 - 1065
  • [25] Experimental Investigation on Ejector Performance Using R134a as Refrigerant
    Dai, Zhengshu
    Yu, Bo
    Liu, Pengpeng
    Chen, Guangming
    Zhang, Hua
    JOURNAL OF THERMAL SCIENCE, 2019, 28 (04) : 727 - 735
  • [26] Experimental investigation on R134a vapour ejector refrigeration system
    Selvaraju, A.
    Mani, A.
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2006, 29 (07): : 1160 - 1166
  • [27] Exergy Analysis of the Combined Ejector - Vapor Compression Refrigeration System Using R134a as Working Fluid
    Kien-Trung Nguyen
    Quoc-An Hoang
    Hiep-Chi Le
    PROCEEDINGS OF 2018 4TH INTERNATIONAL CONFERENCE ON GREEN TECHNOLOGY AND SUSTAINABLE DEVELOPMENT (GTSD), 2018, : 442 - 447
  • [28] Experimental Study on Condensation of R134a Inside Horizontal Inner-Micro-Fin Tubes
    Chen, Qiwei
    Ouyang, Xinping
    PROGRESS IN POWER AND ELECTRICAL ENGINEERING, PTS 1 AND 2, 2012, 354-355 : 753 - 758
  • [29] Prediction of frictional pressure drop of R134a during condensation inside smooth and corrugated tubes
    Dalkilic, Ahmet Selim
    Cebi, Alican
    Acikgoz, Ozgen
    Wongwises, Somchai
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2017, 88 : 183 - 193
  • [30] Condensation heat transfer characteristics of R134a flowing inside mini circular and flattened tubes
    Kaew-On, Jatuporn
    Naphattharanun, Nunthaphan
    Binmud, Ronee
    Wongwises, Somchai
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 102 : 86 - 97