Atomic-Scale Evolution of a Growing Core-Shell Nanoparticle

被引:11
|
作者
Mangel, Shai [1 ]
Aronovitch, Eran [1 ]
Enyashin, Andrey N. [2 ]
Houben, Lothar [3 ,4 ]
Bar-Sadan, Maya [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Chem, IL-84105 Beer Sheva, Israel
[2] Inst Solid State Chem UB RAS, Ekaterinburg 620219, Russia
[3] Forschungszentrum Julich, Peter Grunberg Inst 5, D-52425 Julich, Germany
[4] Forschungszentrum Julich, Ernst Ruska Ctr Microscopy & Spect Elect, D-52425 Julich, Germany
关键词
CDSE; NANOCRYSTALS; CORE/SHELL; MORPHOLOGY; SURFACE;
D O I
10.1021/ja506323s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Understanding the atomic-scale growth at solid/solution interfaces is an emerging frontier in molecular and materials chemistry. This is particularly challenging when studying chemistry occurring on the surfaces of nanoparticles in solution. Here, we provide atomic-scale resolution of growth, in a statistical approach, at the surfaces of inorganic nanoparticles by state-of-the-art aberration-corrected transmission electron microscopy (TEM) and focal series reconstruction. Using well-known CdSe nanoparticles, we unfold new information that, for the first time, allows following growth directly, and the subsequent formation of CdS shells. We correlate synthetic procedures with resulting atomic structure by revealing the distribution of lattice disorder (such as stacking faults) within the CdSe core particles. With additional sequential synthetic steps, an ongoing transformation of the entire structure occurs, such that annealing takes place and stacking faults are eliminated from the core. The general strategy introduced here can now be used to provide equally revealing atomic-scale information concerning the structural evolution of inorganic nanostructures.
引用
收藏
页码:12564 / 12567
页数:4
相关论文
共 50 条
  • [21] Energy-dispersive X-ray spectroscopy for an atomic-scale quantitative analysis of Pd-Pt core-shell nanoparticles
    Inamoto, Shin
    Otsuka, Yuji
    MICROSCOPY, 2020, 69 (01) : 26 - 30
  • [22] Atomic insight into the agglomeration evolution mechanism of aluminum nanoparticles with core-shell structure
    Chen, Binghong
    Shan, Shiquan
    Liu, Hui
    Liu, Jianzhong
    Yang, Qiguo
    ACTA ASTRONAUTICA, 2023, 208 : 256 - 269
  • [23] Plasmon Evolution in Core-Shell Nanospheroids
    Li, Quanshui
    Zhang, Zhili
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (16): : 8891 - 8899
  • [24] Core-Shell Au@Metal-Oxide Nanoparticle Electrocatalysts for Enhanced Oxygen Evolution
    Strickler, Alaina L.
    Escudero-Escribano, Maria
    Jaramillo, Thomas F.
    NANO LETTERS, 2017, 17 (10) : 6040 - 6046
  • [25] Atomic-Scale Structural Analysis of Homoepitaxial LaF3:Yb,Tm Core-Shell Upconversion Nanoparticles Synthesized through a Microwave Route
    Tek, Sumeyra
    Vincent, Brandy A.
    Mimun, L. Christopher
    Ponce, Arturo
    Nash, Kelly L.
    CRYSTAL GROWTH & DESIGN, 2020, 20 (04) : 2153 - 2163
  • [26] Atomic-scale in situ observation of electron beam and heat induced crystallization of Ge nanoparticles and transformation of Ag@Ge core-shell nanocrystals
    Qi, Xiao
    Bustillo, Karen C. C.
    Kauzlarich, Susan M. M.
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (16):
  • [27] Core-Shell Catalysts of Metal Nanoparticle Core and Metal-Organic Framework Shell
    Hu, Pan
    Morabito, Joseph V.
    Tsung, Chia-Kuang
    ACS CATALYSIS, 2014, 4 (12): : 4409 - 4419
  • [28] Core-shell nanoparticle arrays double the strength of steel
    Seol, J. -B.
    Na, S. -H.
    Gault, B.
    Kim, J. -E.
    Han, J. -C.
    Park, C. -G.
    Raabe, D.
    SCIENTIFIC REPORTS, 2017, 7
  • [29] Ion Structure Near a Core-Shell Dielectric Nanoparticle
    Ma, Manman
    Gan, Zecheng
    Xu, Zhenli
    PHYSICAL REVIEW LETTERS, 2017, 118 (07)
  • [30] Multifunctional Core-Shell Nanoparticle Suspensions for Efficient Absorption
    Lv, Wei
    Phelan, Patrick E.
    Swaminathan, Rajasekaran
    Otanicar, Todd P.
    Taylor, Robert A.
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2013, 135 (02):