Half-cell and full-cell investigations of 3D hierarchical MoS2/graphene composite on anode performance in lithium-ion batteries

被引:53
|
作者
Yuan, Guanghui [1 ,2 ]
Wang, Gang [1 ]
Wang, Hui [3 ]
Bai, Jintao [1 ]
机构
[1] NW Univ Xian, Natl Key Lab Photoelect Technol & Funct Mat Cultu, Natl Photoelect Technol & Funct Mat & Applicat In, Inst Photon & Photon Technol,Phys Dept, Xian 710069, Peoples R China
[2] Ankang Univ, Dept Chem & Chem Engn, Ankang 725000, Shaanxi, Peoples R China
[3] NW Univ Xian, Coll Chem & Mat Sci, Minist Educ, Key Lab Synthet & Nat Funct Mol Chem, Xian 710069, Peoples R China
基金
中国国家自然科学基金;
关键词
MoS2/graphene composite; Full-cell investigation; Anode material; Electrochemical performances; FEW-LAYER MOS2; FACILE SYNTHESIS; MOS2-GRAPHENE COMPOSITES; GRAPHENE NANOSHEETS; BINDER-FREE; CARBON; NANOCOMPOSITES; NANOPARTICLES; CLOTH; OXIDE;
D O I
10.1016/j.jallcom.2015.11.079
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel 3D hierarchical MoS2/graphene (MoS2/GN) composite is designed by a facile one-step hydrothermal co-assembling method without using any templates. SEM and TEM images show that the MoS2/GN flower-like particles are self-assembled by MoS2 nanoflakes and graphene nanosheets. According to the hydrothermal method used and characterization results observed, the formation process is proposed. Electrochemical performances of the MoS2/GN composite as anode active material in Lithium-ion batteries (LIBs) is investigated in both MoS2/GN//Li half-cells and MoS2/GN//LiCoO2 full-cells. The MoS2/GN composite delivers high initial discharge capacities of 1240 mAh g(-1) and good capacity retentions (about 80%) after more than 80 cycles in half-cells. Furthermore, the assembled MoS2/GN//LiCoO2 full-cell delivers high initial discharge capacities of 1203 mAh g(-1). The excellent lithium storage performances of the obtained MoS2/GN composite can be mainly attributed to the designed novel structure of the composite. The cross-linked graphene nanosheets, the anchoring MoS2 nanoflakes and the synergistic effects between them make the composite good conductivity, enough buffering space for the volume change, and shortened ionic transport length. This work clearly demonstrates that the MoS2/GN composite is a promising alternative material for anode in the LIB applications. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:62 / 72
页数:11
相关论文
共 50 条
  • [31] Correction to: Unique three-dimensional hierarchical heterogeneous MoS2/graphene structures as a high-performance anode material for lithium-ion batteries
    Fei Long
    Yi Chen
    Caihong Wu
    Jilin Wang
    Shuyi Mo
    Zhengguang Zou
    Guoyuan Zheng
    Ionics, 2021, 27 : 3671 - 3671
  • [32] 3D porous hybrids of defect-rich MoS2/graphene nanosheets with excellent electrochemical performance as anode materials for lithium ion batteries
    Zhang, Longsheng
    Fan, Wei
    Tjiu, Weng Weei
    Liu, Tianxi
    RSC ADVANCES, 2015, 5 (44): : 34777 - 34787
  • [33] A novel MoS2/C nanocomposite as an anode material for lithium-ion batteries
    Liu, Yan
    Tang, Daoping
    Zhong, Haoxiang
    Zhang, Qianyu
    Yang, Jianwen
    Zhang, Lingzhi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 729 : 583 - 589
  • [34] Self-supporting and 3D MoS2/MoO2/CNT/graphene foam as high-performance anode for lithium ion batteries
    Jing Li
    Shaolin Du
    Huachao Tao
    Xuelin Yang
    Ionics, 2021, 27 : 75 - 84
  • [35] Self-supporting and 3D MoS2/MoO2/CNT/graphene foam as high-performance anode for lithium ion batteries
    Li, Jing
    Du, Shaolin
    Tao, Huachao
    Yang, Xuelin
    IONICS, 2021, 27 (01) : 75 - 84
  • [36] ZnFe2O4/MoS2/rGO composite as an anode for rechargeable Lithium-ion batteries
    Jiang, Lixue
    Gao, Wang
    Jin, Bo
    Li, Huan
    Li, Shanshan
    Zhu, Guoren
    Jiang, Qing
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 823 : 407 - 415
  • [37] Polyaniline intercalated MoS2 nanosheet array aligned on reduced oxide graphene as high performance anode for lithium-ion batteries
    Zhang, Jiaqing
    Huang, Wenjie
    Yuan, Bin
    Hu, Renzong
    Yang, Lichun
    SOLID STATE IONICS, 2022, 375
  • [38] A magnetite nanocrystal/graphene composite as high performance anode for lithium-ion batteries
    Huang, Xiaodan
    Zhou, Xufeng
    Qian, Kun
    Zhao, Dongyuan
    Liu, Zhaoping
    Yu, Chengzhong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 514 : 76 - 80
  • [39] A novel strategy for capacity judgement of hard carbon in sodium-ion batteries: Ensuring the consistency of the available anode capacity between half-cell and full-cell
    Zhao, Chenyu
    Wei, Yanwei
    Pan, Yu
    Chen, Chunhui
    SOLID STATE IONICS, 2024, 412
  • [40] Improving Lithium-Ion Diffusion Kinetics in Nano-Si@C Anode Materials with Hierarchical MoS2 Decoration for High-Performance Lithium-Ion Batteries
    Ye, Xiongbiao
    Gan, Chuanhai
    Huang, Liuqing
    Qiu, Yiwei
    Xu, Ying
    Huang, Liuying
    Luo, Xuetao
    CHEMELECTROCHEM, 2021, 8 (07) : 1270 - 1279